[Sur des solutions distributionnelles de problèmes locaux et non locaux de type milieux poreux]
Nous montrons l'unicité, l'existence, et des estimations a priori pour des solutions distributionnelles bornées de (0.1), où φ est continue et croissante et
We present a theory of well-posedness and a priori estimates for bounded distributional (or very weak) solutions of
(0.1) |
Accepté le :
Publié le :
Félix del Teso 1 ; Jørgen Endal 1 ; Espen R. Jakobsen 1
@article{CRMATH_2017__355_11_1154_0, author = {F\'elix del Teso and J{\o}rgen Endal and Espen R. Jakobsen}, title = {On distributional solutions of local and nonlocal problems of porous medium type}, journal = {Comptes Rendus. Math\'ematique}, pages = {1154--1160}, publisher = {Elsevier}, volume = {355}, number = {11}, year = {2017}, doi = {10.1016/j.crma.2017.10.010}, language = {en}, }
TY - JOUR AU - Félix del Teso AU - Jørgen Endal AU - Espen R. Jakobsen TI - On distributional solutions of local and nonlocal problems of porous medium type JO - Comptes Rendus. Mathématique PY - 2017 SP - 1154 EP - 1160 VL - 355 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2017.10.010 LA - en ID - CRMATH_2017__355_11_1154_0 ER -
%0 Journal Article %A Félix del Teso %A Jørgen Endal %A Espen R. Jakobsen %T On distributional solutions of local and nonlocal problems of porous medium type %J Comptes Rendus. Mathématique %D 2017 %P 1154-1160 %V 355 %N 11 %I Elsevier %R 10.1016/j.crma.2017.10.010 %G en %F CRMATH_2017__355_11_1154_0
Félix del Teso; Jørgen Endal; Espen R. Jakobsen. On distributional solutions of local and nonlocal problems of porous medium type. Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1154-1160. doi : 10.1016/j.crma.2017.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.010/
[1] Uniqueness of solutions of the initial-value problem for
[2] A general fractional porous medium equation, Commun. Pure Appl. Math., Volume 65 (2012) no. 9, pp. 1242-1284
[3] F. del Teso, J. Endal, E.R. Jakobsen, Numerical methods and analysis for nonlocal (and local) equations of porous medium type, preprint, 2017.
[4] On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type, Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. A Volume in Honor of Helge Holden's 60th Birthday, EMS Ser. Congr. Rep., 2017 (in press)
[5] Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type, Adv. Math., Volume 305 (2017), pp. 78-143
[6] The Porous Medium Equation. Mathematical Theory, Oxf. Math. Monogr., Clarendon Press, Oxford University Press, Oxford, UK, 2007
- The Neumann condition for the superposition of fractional Laplacians, ESAIM: Control, Optimisation and Calculus of Variations, Volume 31 (2025), p. 25 | DOI:10.1051/cocv/2025015
- A nonlocal type problem involving a mixed local and nonlocal operator, Arabian Journal of Mathematics, Volume 13 (2024) no. 1, p. 63 | DOI:10.1007/s40065-023-00444-x
- , Fourth International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2024) (2024), p. 152 | DOI:10.1117/12.3036714
- A Faber-Krahn inequality for mixed local and nonlocal operators, Journal d'Analyse Mathématique, Volume 150 (2023) no. 2, p. 405 | DOI:10.1007/s11854-023-0272-5
- Nonlocal nonlinear diffusion equations. Smoothing effects, Green functions, and functional inequalities, Journal of Functional Analysis, Volume 284 (2023) no. 6, p. 109831 | DOI:10.1016/j.jfa.2022.109831
- Mixed local and nonlocal equation with singular nonlinearity having variable exponent, Journal of Pseudo-Differential Operators and Applications, Volume 14 (2023) no. 1 | DOI:10.1007/s11868-023-00509-7
- Sharp Existence of Ground States Solutions for a Class of Elliptic Equations with Mixed Local and Nonlocal Operators and General Nonlinearity, Mathematics, Volume 11 (2023) no. 16, p. 3464 | DOI:10.3390/math11163464
- Linear theory for a mixed operator with Neumann conditions, Asymptotic Analysis, Volume 128 (2022) no. 4, p. 571 | DOI:10.3233/asy-211718
- Mixed local and nonlocal elliptic operators: regularity and maximum principles, Communications in Partial Differential Equations, Volume 47 (2022) no. 3, p. 585 | DOI:10.1080/03605302.2021.1998908
- Regularity results for solutions of mixed local and nonlocal elliptic equations, Mathematische Zeitschrift, Volume 302 (2022) no. 3, p. 1855 | DOI:10.1007/s00209-022-03132-2
- The one-phase fractional Stefan problem, Mathematical Models and Methods in Applied Sciences, Volume 31 (2021) no. 01, p. 83 | DOI:10.1142/s0218202521500032
- Semilinear elliptic equations involving mixed local and nonlocal operators, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 5, p. 1611 | DOI:10.1017/prm.2020.75
- On the Two-phase Fractional Stefan Problem, Advanced Nonlinear Studies, Volume 20 (2020) no. 2, p. 437 | DOI:10.1515/ans-2020-2081
- Nonlocal dissipation measure and L1 kinetic theory for fractional conservation laws, Communications in Partial Differential Equations, Volume 45 (2020) no. 9, p. 1213 | DOI:10.1080/03605302.2020.1768542
- The Liouville theorem and linear operators satisfying the maximum principle, Journal de Mathématiques Pures et Appliquées, Volume 142 (2020), p. 229 | DOI:10.1016/j.matpur.2020.08.008
- Uniqueness of entropy solutions to fractional conservation laws with “fully infinite” speed of propagation, Journal of Differential Equations, Volume 268 (2020) no. 7, p. 3903 | DOI:10.1016/j.jde.2019.10.008
- A Framework for Nonlocal, Nonlinear Initial Value Problems, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 3, p. 2383 | DOI:10.1137/19m124143x
- Mathematical and numerical analysis of initial boundary value problem for a linear nonlocal equation, Mathematics and Computers in Simulation, Volume 166 (2019), p. 113 | DOI:10.1016/j.matcom.2019.04.011
- Robust Numerical Methods for Nonlocal (and Local) Equations of Porous Medium Type. Part I: Theory, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 5, p. 2266 | DOI:10.1137/19m1237041
- Robust Numerical Methods for Nonlocal (and Local) Equations of Porous Medium Type. Part II: Schemes and Experiments, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 6, p. 3611 | DOI:10.1137/18m1180748
Cité par 20 documents. Sources : Crossref
Commentaires - Politique