Comptes Rendus
Partial differential equations
On distributional solutions of local and nonlocal problems of porous medium type
[Sur des solutions distributionnelles de problèmes locaux et non locaux de type milieux poreux]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1154-1160.

Nous montrons l'unicité, l'existence, et des estimations a priori pour des solutions distributionnelles bornées de (0.1), où φ est continue et croissante et Lσ,μ est le générateur d'un processus de Lévy symétrique général. Cela veut dire que Lσ,μ peut avoir des parties locales et non locales, comme par exemple Lσ,μ=Δ(Δ)12. Nous présentons et montrons des nouveaux résultats d'unicité pour des solutions distributionnelles bornées de ce problème. Un nouveau résultat de type Liouville pour Lσ,μ joue un rôle clé. L'existence et des estimations a priori sont déduites d'une approximation numérique ; des inégalités de type énergie sont aussi obtenues.

We present a theory of well-posedness and a priori estimates for bounded distributional (or very weak) solutions of

tuLσ,μ[φ(u)]=g(x,t)inRN×(0,T),(0.1)
where φ is merely continuous and nondecreasing, and Lσ,μ is the generator of a general symmetric Lévy process. This means that Lσ,μ can have both local and nonlocal parts like, e.g., Lσ,μ=Δ(Δ)12. New uniqueness results for bounded distributional solutions to this problem and the corresponding elliptic equation are presented and proven. A key role is played by a new Liouville type result for Lσ,μ. Existence and a priori estimates are deduced from a numerical approximation, and energy-type estimates are also obtained.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.10.010

Félix del Teso 1 ; Jørgen Endal 1 ; Espen R. Jakobsen 1

1 NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
@article{CRMATH_2017__355_11_1154_0,
     author = {F\'elix del Teso and J{\o}rgen Endal and Espen R. Jakobsen},
     title = {On distributional solutions of local and nonlocal problems of porous medium type},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1154--1160},
     publisher = {Elsevier},
     volume = {355},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.010},
     language = {en},
}
TY  - JOUR
AU  - Félix del Teso
AU  - Jørgen Endal
AU  - Espen R. Jakobsen
TI  - On distributional solutions of local and nonlocal problems of porous medium type
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1154
EP  - 1160
VL  - 355
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2017.10.010
LA  - en
ID  - CRMATH_2017__355_11_1154_0
ER  - 
%0 Journal Article
%A Félix del Teso
%A Jørgen Endal
%A Espen R. Jakobsen
%T On distributional solutions of local and nonlocal problems of porous medium type
%J Comptes Rendus. Mathématique
%D 2017
%P 1154-1160
%V 355
%N 11
%I Elsevier
%R 10.1016/j.crma.2017.10.010
%G en
%F CRMATH_2017__355_11_1154_0
Félix del Teso; Jørgen Endal; Espen R. Jakobsen. On distributional solutions of local and nonlocal problems of porous medium type. Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1154-1160. doi : 10.1016/j.crma.2017.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.010/

[1] H. Brézis; M.G. Crandall Uniqueness of solutions of the initial-value problem for utΔφ(u)=0, J. Math. Pures Appl. (9), Volume 58 (1979) no. 2, pp. 153-163

[2] A. de Pablo; F. Quirós; A. Rodríguez; J.L. Vázquez A general fractional porous medium equation, Commun. Pure Appl. Math., Volume 65 (2012) no. 9, pp. 1242-1284

[3] F. del Teso, J. Endal, E.R. Jakobsen, Numerical methods and analysis for nonlocal (and local) equations of porous medium type, preprint, 2017.

[4] F. del Teso; J. Endal; E.R. Jakobsen On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type, Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. A Volume in Honor of Helge Holden's 60th Birthday, EMS Ser. Congr. Rep., 2017 (in press)

[5] F. del Teso; J. Endal; E.R. Jakobsen Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type, Adv. Math., Volume 305 (2017), pp. 78-143

[6] J.L. Vázquez The Porous Medium Equation. Mathematical Theory, Oxf. Math. Monogr., Clarendon Press, Oxford University Press, Oxford, UK, 2007

  • Serena Dipierro; Edoardo Proietti Lippi; Caterina Sportelli; Enrico Valdinoci The Neumann condition for the superposition of fractional Laplacians, ESAIM: Control, Optimisation and Calculus of Variations, Volume 31 (2025), p. 25 | DOI:10.1051/cocv/2025015
  • Kheireddine Biroud A nonlocal type problem involving a mixed local and nonlocal operator, Arabian Journal of Mathematics, Volume 13 (2024) no. 1, p. 63 | DOI:10.1007/s40065-023-00444-x
  • Jun Xiang; Zhiying Deng; Parikshit N. Mahalle; Mohammad S. Obaidat, Fourth International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2024) (2024), p. 152 | DOI:10.1117/12.3036714
  • Stefano Biagi; Serena Dipierro; Enrico Valdinoci; Eugenio Vecchi A Faber-Krahn inequality for mixed local and nonlocal operators, Journal d'Analyse Mathématique, Volume 150 (2023) no. 2, p. 405 | DOI:10.1007/s11854-023-0272-5
  • Matteo Bonforte; Jørgen Endal Nonlocal nonlinear diffusion equations. Smoothing effects, Green functions, and functional inequalities, Journal of Functional Analysis, Volume 284 (2023) no. 6, p. 109831 | DOI:10.1016/j.jfa.2022.109831
  • Kheireddine Biroud Mixed local and nonlocal equation with singular nonlinearity having variable exponent, Journal of Pseudo-Differential Operators and Applications, Volume 14 (2023) no. 1 | DOI:10.1007/s11868-023-00509-7
  • Tingjian Luo; Qihuan Xie Sharp Existence of Ground States Solutions for a Class of Elliptic Equations with Mixed Local and Nonlocal Operators and General Nonlinearity, Mathematics, Volume 11 (2023) no. 16, p. 3464 | DOI:10.3390/math11163464
  • Serena Dipierro; Edoardo Proietti Lippi; Enrico Valdinoci Linear theory for a mixed operator with Neumann conditions, Asymptotic Analysis, Volume 128 (2022) no. 4, p. 571 | DOI:10.3233/asy-211718
  • Stefano Biagi; Serena Dipierro; Enrico Valdinoci; Eugenio Vecchi Mixed local and nonlocal elliptic operators: regularity and maximum principles, Communications in Partial Differential Equations, Volume 47 (2022) no. 3, p. 585 | DOI:10.1080/03605302.2021.1998908
  • Xifeng Su; Enrico Valdinoci; Yuanhong Wei; Jiwen Zhang Regularity results for solutions of mixed local and nonlocal elliptic equations, Mathematische Zeitschrift, Volume 302 (2022) no. 3, p. 1855 | DOI:10.1007/s00209-022-03132-2
  • Félix del Teso; Jørgen Endal; Juan Luis Vázquez The one-phase fractional Stefan problem, Mathematical Models and Methods in Applied Sciences, Volume 31 (2021) no. 01, p. 83 | DOI:10.1142/s0218202521500032
  • Stefano Biagi; Eugenio Vecchi; Serena Dipierro; Enrico Valdinoci Semilinear elliptic equations involving mixed local and nonlocal operators, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 5, p. 1611 | DOI:10.1017/prm.2020.75
  • Félix del Teso; Jørgen Endal; Juan Luis Vázquez On the Two-phase Fractional Stefan Problem, Advanced Nonlinear Studies, Volume 20 (2020) no. 2, p. 437 | DOI:10.1515/ans-2020-2081
  • Nathaël Alibaud; Boris Andreianov; Adama Ouédraogo Nonlocal dissipation measure and L1 kinetic theory for fractional conservation laws, Communications in Partial Differential Equations, Volume 45 (2020) no. 9, p. 1213 | DOI:10.1080/03605302.2020.1768542
  • Nathaël Alibaud; Félix del Teso; Jørgen Endal; Espen R. Jakobsen The Liouville theorem and linear operators satisfying the maximum principle, Journal de Mathématiques Pures et Appliquées, Volume 142 (2020), p. 229 | DOI:10.1016/j.matpur.2020.08.008
  • Boris Andreianov; Matthieu Brassart Uniqueness of entropy solutions to fractional conservation laws with “fully infinite” speed of propagation, Journal of Differential Equations, Volume 268 (2020) no. 7, p. 3903 | DOI:10.1016/j.jde.2019.10.008
  • Grzegorz Karch; Moritz Kassmann; Miłosz Krupski A Framework for Nonlocal, Nonlinear Initial Value Problems, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 3, p. 2383 | DOI:10.1137/19m124143x
  • Mateusz Wróbel Mathematical and numerical analysis of initial boundary value problem for a linear nonlocal equation, Mathematics and Computers in Simulation, Volume 166 (2019), p. 113 | DOI:10.1016/j.matcom.2019.04.011
  • Felix del Teso; Jørgen Endal; Espen R. Jakobsen Robust Numerical Methods for Nonlocal (and Local) Equations of Porous Medium Type. Part I: Theory, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 5, p. 2266 | DOI:10.1137/19m1237041
  • Félix del Teso; Jørgen Endal; Espen R. Jakobsen Robust Numerical Methods for Nonlocal (and Local) Equations of Porous Medium Type. Part II: Schemes and Experiments, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 6, p. 3611 | DOI:10.1137/18m1180748

Cité par 20 documents. Sources : Crossref

Commentaires - Politique