Comptes Rendus
Functional analysis
Common solutions to a system of variational inequalities over the set of common fixed points of demi-contractive operators
[Solutions communes d'inégalités variationnelles sur l'ensemble des points fixes communs d'opérateurs semi-contractants]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1168-1177.

Dans cette Note, nous introduisons un algorithme parallèle explicite, trouvant les solutions communes d'un système d'inégalités variationnelles sur l'ensemble des points fixes communs à une famille finie d'opérateurs semi-contractants. Sous des hypothèses convenables, nous démontrons la convergence forte de cet algorithme dans le cadre des espaces de Hilbert. Les résultats obtenus étendent et améliorent ceux de Tian et Jiang (2017), de Censor, Gibali et Reich (2012), ainsi que de plusieurs autres auteurs.

In this paper, we introduce an explicit parallel algorithm for finding common solutions to a system of variational inequalities over the set of common fixed points of a finite family of demi-contractive operators. Under suitable assumptions, we prove the strong convergence of this algorithm in the framework of a Hilbert space. The results obtained in this paper extend and improve the results of Tian and Jiang (2017), of Censor, Gibali and Reich (2012), and of many others.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.10.018

Mohammad Eslamian 1

1 Department of Mathematics, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
@article{CRMATH_2017__355_11_1168_0,
     author = {Mohammad Eslamian},
     title = {Common solutions to a system of variational inequalities over the set of common fixed points of demi-contractive operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1168--1177},
     publisher = {Elsevier},
     volume = {355},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.018},
     language = {en},
}
TY  - JOUR
AU  - Mohammad Eslamian
TI  - Common solutions to a system of variational inequalities over the set of common fixed points of demi-contractive operators
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1168
EP  - 1177
VL  - 355
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2017.10.018
LA  - en
ID  - CRMATH_2017__355_11_1168_0
ER  - 
%0 Journal Article
%A Mohammad Eslamian
%T Common solutions to a system of variational inequalities over the set of common fixed points of demi-contractive operators
%J Comptes Rendus. Mathématique
%D 2017
%P 1168-1177
%V 355
%N 11
%I Elsevier
%R 10.1016/j.crma.2017.10.018
%G en
%F CRMATH_2017__355_11_1168_0
Mohammad Eslamian. Common solutions to a system of variational inequalities over the set of common fixed points of demi-contractive operators. Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1168-1177. doi : 10.1016/j.crma.2017.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.018/

[1] J.-B. Baillon; R.E. Bruck; S. Reich On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houst. J. Math., Volume 4 (1978), pp. 1-9

[2] F.E. Browder; W.V. Petryshyn Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228

[3] C. Byrne Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., Volume 18 (2002), pp. 441-453

[4] C. Byrne A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., Volume 20 (2004), pp. 103-120

[5] A. Cegielski Application of quasi-nonexpansive operators to an iterative method for variational inequality, SIAM J. Optim., Volume 25 (2015), pp. 2165-2181

[6] A. Cegielski; R. Zalas Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators, Numer. Funct. Anal. Optim., Volume 34 (2013), pp. 255-283

[7] L.C. Ceng; Q.H. Ansari; J.C. Yao Mann-type steepest-descent and modified hybrid steepest-descent methods for variational inequalities in Banach spaces, Numer. Funct. Anal. Optim., Volume 29 (2008), pp. 987-1033

[8] L.C. Ceng; Q.H. Ansari; J.C. Yao Some iterative method for finding fixed points and solving constrained convex minimization problems, Numer. Algebra Control Optim., Volume 1 (2011), pp. 341-359

[9] Y. Censor; T. Elfving A multiprojection algorithms using Bragman projection in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239

[10] Y. Censor; T. Elfving; N. Kopf; T. Bortfeld The multiple-sets split feasibility problem and its applications, Inverse Probl., Volume 21 (2005), pp. 2071-2084

[11] Y. Censor; A. Gibali; S. Reich A von Neumann alternating method for finding common solutions to variational inequalities, Nonlinear Anal., Volume 75 (2012), pp. 4596-4603

[12] Y. Censor; A. Gibali; S. Reich; S. Sabach Common solutions to variational inequalities, Set-Valued Var. Anal., Volume 20 (2012), pp. 229-247

[13] C.E. Chidume; S. Maruster Iterative methods for the computation of fixed points of demicontractive mappings, J. Comput. Appl. Math., Volume 234 (2010), pp. 861-882

[14] J. Garcia-Falset; E. Llorens-Fuster; T. Suzuki Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., Volume 375 (2011), pp. 185-195

[15] A. Gibali; S. Reich; R. Zalas Outer approximation methods for solving variational inequalities in Hilbert space, Optimization, Volume 66 (2017), pp. 417-437

[16] K. Goebel; S. Reich Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984

[17] S. He; C. Yang Solving the variational inequality problem defined on intersection of finite level sets, Abstr. Appl. Anal., Volume 2013 (2013)

[18] T.L. Hicks; J.R. Kubicek On the Mann iterative process in Hilbert spaces, J. Math. Anal. Appl., Volume 59 (1977), pp. 498-504

[19] I. Hlavacek; J. Haslinger; J. Necas; J. Lovisek Solution of Variational Inequalities in Mechanics, Springer, New York, 1988

[20] D. Kinderlehrer; G. Stampacchia An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980

[21] V.I. Kolobov; S. Reich; R. Zalas Weak, strong, and linear convergence of a double-layer fixed point algorithm, SIAM J. Optim., Volume 27 (2017), pp. 1431-1458

[22] G. Marino; H.K. Xu Weak and strong convergence theorems for strictly pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-349

[23] S. Maruster; C. Popirlan On the Mann-type iteration and convex feasibility problem, J. Comput. Appl. Math., Volume 212 (2008), pp. 390-396

[24] E. Masad; S. Reich A note on the multiple-set split convex feasibility problem, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 367-371

[25] M. Tian; B.N. Jiang Weak convergence theorem for zero points of inverse strongly monotone mapping and fixed points of nonexpansive mapping in Hilbert space, Optimization, Volume 66 (2017), pp. 1689-1698

[26] I. Yamada The hybrid steepest descent method for the variational inequality problems over the intersection of fixed points sets of nonexpansive mapping (D. Butnariu; Y. Censor; S. Reich, eds.), Inherently Parallel Algorithms in Feasibility and Optimization and Their Application, North-Holland, Amsterdam, 2001, pp. 473-504

[27] I. Yamada; N. Ogura Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. Funct. Anal. Optim., Volume 25 (2004), pp. 619-655

[28] E. Zeidler Nonlinear Functional Analysis and Its Applications, Springer, New York, 1985

[29] H.Y. Zhou; P.A. Wang A simpler explicit iterative algorithm for a class of variational inequalities in Hilbert spaces, J. Optim. Theory Appl., Volume 161 (2014), pp. 716-727

Cité par Sources :

Commentaires - Politique