Comptes Rendus
Partial differential equations/Functional analysis
A variational principle for problems with a hint of convexity
[Un principe variationnel pour des problèmes avec une certaine convexité]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1236-1241.

Un principe variationnel est introduit pour fournir une nouvelle formulation et résolution de nombreux problèmes aux limites avec structure variationnelle. Ce principe permet de considérer des problèmes bien au-delà de la structure faiblement compacte. Ainsi, nous étudions de nombreux probèmes elliptiques semilinéaires supercritiques.

A variational principle is introduced to provide a new formulation and resolution for several boundary value problems with a variational structure. This principle allows one to deal with problems well beyond the weakly compact structure. As a result, we study several super-critical semilinear Elliptic problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.11.003
Abbas Moameni 1

1 School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
@article{CRMATH_2017__355_12_1236_0,
     author = {Abbas Moameni},
     title = {A variational principle for problems with a hint of convexity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1236--1241},
     publisher = {Elsevier},
     volume = {355},
     number = {12},
     year = {2017},
     doi = {10.1016/j.crma.2017.11.003},
     language = {en},
}
TY  - JOUR
AU  - Abbas Moameni
TI  - A variational principle for problems with a hint of convexity
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1236
EP  - 1241
VL  - 355
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2017.11.003
LA  - en
ID  - CRMATH_2017__355_12_1236_0
ER  - 
%0 Journal Article
%A Abbas Moameni
%T A variational principle for problems with a hint of convexity
%J Comptes Rendus. Mathématique
%D 2017
%P 1236-1241
%V 355
%N 12
%I Elsevier
%R 10.1016/j.crma.2017.11.003
%G en
%F CRMATH_2017__355_12_1236_0
Abbas Moameni. A variational principle for problems with a hint of convexity. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1236-1241. doi : 10.1016/j.crma.2017.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.003/

[1] A. Ambrosetti; H. Brézis; G. Cerami Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543

[2] A. Bahri; H. Berestycki A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc., Volume 267 (1981), pp. 1-32

[3] T. Bartsch; M. Willem On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., Volume 123 (1995) no. 11, pp. 3555-3561

[4] D. Bonheure; B. Noris; T. Weth Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 4, pp. 573-588

[5] C. Cowan; A. Moameni A new variational principle, convexity and supercritical Neumann problems, Trans. Amer. Math. Soc. (2017) (in press)

[6] I. Ekeland; R. Temam Convex Analysis and Variational Problems, American Elsevier Publishing Co., Inc., New York, 1976

[7] D. Gilbarg; N.S. Trudinger Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 Reprint of the (1998) edition

[8] M. Grossi; B. Noris Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., Volume 140 (2012) no. 6, pp. 2141-2154

[9] A. Moameni Non-convex self-dual Lagrangians: new variational principles of symmetric boundary value problems, J. Funct. Anal., Volume 260 (2011), pp. 2674-2715

[10] A. Moameni New variational principles of symmetric boundary value problems, J. Convex Anal., Volume 24 (2017) no. 2, pp. 365-381

[11] A. Moameni, A variational principle for problems in partial differential equations and nonlinear analysis, in preparation.

[12] D. Motreanu; P.D. Panagiotopoulos Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optimization and Its Applications, vol. 29, 1999

[13] E. Serra; P. Tilli Monotonicity constraints and supercritical Neumann problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2001) no. 1, pp. 63-74

[14] M. Struwe Variational Methods, Springer, Berlin, 1990

[15] A. Szulkin Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 3 (1986) no. 2, pp. 77-109

Cité par Sources :

The author is pleased to acknowledge the support of the National Sciences and Engineering Research Council of Canada (grant number 315920).

Commentaires - Politique