[Un principe variationnel pour des problèmes avec une certaine convexité]
A variational principle is introduced to provide a new formulation and resolution for several boundary value problems with a variational structure. This principle allows one to deal with problems well beyond the weakly compact structure. As a result, we study several super-critical semilinear Elliptic problems.
Un principe variationnel est introduit pour fournir une nouvelle formulation et résolution de nombreux problèmes aux limites avec structure variationnelle. Ce principe permet de considérer des problèmes bien au-delà de la structure faiblement compacte. Ainsi, nous étudions de nombreux probèmes elliptiques semilinéaires supercritiques.
Accepté le :
Publié le :
Abbas Moameni 1
@article{CRMATH_2017__355_12_1236_0, author = {Abbas Moameni}, title = {A variational principle for problems with a hint of convexity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1236--1241}, publisher = {Elsevier}, volume = {355}, number = {12}, year = {2017}, doi = {10.1016/j.crma.2017.11.003}, language = {en}, }
Abbas Moameni. A variational principle for problems with a hint of convexity. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1236-1241. doi : 10.1016/j.crma.2017.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.003/
[1] Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543
[2] A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc., Volume 267 (1981), pp. 1-32
[3] On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., Volume 123 (1995) no. 11, pp. 3555-3561
[4] Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 4, pp. 573-588
[5] A new variational principle, convexity and supercritical Neumann problems, Trans. Amer. Math. Soc. (2017) (in press)
[6] Convex Analysis and Variational Problems, American Elsevier Publishing Co., Inc., New York, 1976
[7] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 Reprint of the (1998) edition
[8] Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., Volume 140 (2012) no. 6, pp. 2141-2154
[9] Non-convex self-dual Lagrangians: new variational principles of symmetric boundary value problems, J. Funct. Anal., Volume 260 (2011), pp. 2674-2715
[10] New variational principles of symmetric boundary value problems, J. Convex Anal., Volume 24 (2017) no. 2, pp. 365-381
[11] A. Moameni, A variational principle for problems in partial differential equations and nonlinear analysis, in preparation.
[12] Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optimization and Its Applications, vol. 29, 1999
[13] Monotonicity constraints and supercritical Neumann problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2001) no. 1, pp. 63-74
[14] Variational Methods, Springer, Berlin, 1990
[15] Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 3 (1986) no. 2, pp. 77-109
- Positive nonradial solutions of an elliptic equation with critical advection term, Journal of Differential Equations, Volume 436 (2025), p. 113346 | DOI:10.1016/j.jde.2025.113346
- Positive solution for the Kirchhoff‐type equation with supercritical concave and convex nonlinearities, Mathematische Nachrichten (2025) | DOI:10.1002/mana.70002
- Radial positive solutions for mixed local and nonlocal supercritical Neumann problem, Nonlinear Analysis, Volume 255 (2025), p. 113763 | DOI:10.1016/j.na.2025.113763
- Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities, Journal of Pseudo-Differential Operators and Applications, Volume 15 (2024) no. 2 | DOI:10.1007/s11868-024-00593-3
- A Class of Weak Solution Existence Problems for Nonlinear Fourth-Order p-Laplace Equations, Pure Mathematics, Volume 14 (2024) no. 10, p. 66 | DOI:10.12677/pm.2024.1410345
- Existence of Solutions to Fractional Elliptic Equation with the Hardy Potential and Concave–Convex Nonlinearities, Mediterranean Journal of Mathematics, Volume 20 (2023) no. 1 | DOI:10.1007/s00009-022-02234-9
- Existence of Solutions for Supercritical (p, 2)-Laplace Equations, Mediterranean Journal of Mathematics, Volume 20 (2023) no. 3 | DOI:10.1007/s00009-023-02336-y
- Extremal Regions and Multiplicity of Positive Solutions for Singular Superlinear Elliptic Systems with Indefinite-Sign Potential, Milan Journal of Mathematics, Volume 91 (2023) no. 2, p. 213 | DOI:10.1007/s00032-023-00379-0
- Existence of solutions to elliptic equation with mixed local and nonlocal operators, AIMS Mathematics, Volume 7 (2022) no. 7, p. 13313 | DOI:10.3934/math.2022735
- Supercritical problems with concave and convex nonlinearities in ℝN, Communications in Contemporary Mathematics, Volume 23 (2021) no. 06, p. 2050052 | DOI:10.1142/s0219199720500522
- Existence of Solutions for a Non-homogeneous Neumann Problem, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 6 | DOI:10.1007/s00009-021-01897-0
- Existence of Solutions for Nonlocal Supercritical Elliptic Problems, The Journal of Geometric Analysis, Volume 31 (2021) no. 1, p. 164 | DOI:10.1007/s12220-019-00254-8
- A Note on the Existence Results for Schrödinger–Maxwell System with Super-Critical Nonlinearitie, Acta Applicandae Mathematicae, Volume 166 (2020) no. 1, p. 215 | DOI:10.1007/s10440-019-00263-3
- Critical point theory on convex subsets with applications in differential equations and analysis, Journal de Mathématiques Pures et Appliquées, Volume 141 (2020), p. 266 | DOI:10.1016/j.matpur.2020.05.005
- Super-critical Neumann problems on unbounded domains, Nonlinearity, Volume 33 (2020) no. 9, p. 4568 | DOI:10.1088/1361-6544/ab8bac
- Existence results for a supercritical Neumann problem with a convex–concave non-linearity, Annali di Matematica Pura ed Applicata (1923 -), Volume 198 (2019) no. 4, p. 1165 | DOI:10.1007/s10231-018-0813-1
- Multiplicity results for a non-local problem with concave and convex nonlinearities, Nonlinear Analysis, Volume 182 (2019), p. 263 | DOI:10.1016/j.na.2018.12.006
- Multiplicity results for elliptic problems with super-critical concave and convex nonlinearties, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 2 | DOI:10.1007/s00526-018-1333-y
Cité par 18 documents. Sources : Crossref
☆ The author is pleased to acknowledge the support of the National Sciences and Engineering Research Council of Canada (grant number 315920).
Commentaires - Politique