Comptes Rendus
Partial differential equations/Functional analysis
A variational principle for problems with a hint of convexity
Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1236-1241.

A variational principle is introduced to provide a new formulation and resolution for several boundary value problems with a variational structure. This principle allows one to deal with problems well beyond the weakly compact structure. As a result, we study several super-critical semilinear Elliptic problems.

Un principe variationnel est introduit pour fournir une nouvelle formulation et résolution de nombreux problèmes aux limites avec structure variationnelle. Ce principe permet de considérer des problèmes bien au-delà de la structure faiblement compacte. Ainsi, nous étudions de nombreux probèmes elliptiques semilinéaires supercritiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.11.003

Abbas Moameni 1

1 School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
@article{CRMATH_2017__355_12_1236_0,
     author = {Abbas Moameni},
     title = {A variational principle for problems with a hint of convexity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1236--1241},
     publisher = {Elsevier},
     volume = {355},
     number = {12},
     year = {2017},
     doi = {10.1016/j.crma.2017.11.003},
     language = {en},
}
TY  - JOUR
AU  - Abbas Moameni
TI  - A variational principle for problems with a hint of convexity
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1236
EP  - 1241
VL  - 355
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2017.11.003
LA  - en
ID  - CRMATH_2017__355_12_1236_0
ER  - 
%0 Journal Article
%A Abbas Moameni
%T A variational principle for problems with a hint of convexity
%J Comptes Rendus. Mathématique
%D 2017
%P 1236-1241
%V 355
%N 12
%I Elsevier
%R 10.1016/j.crma.2017.11.003
%G en
%F CRMATH_2017__355_12_1236_0
Abbas Moameni. A variational principle for problems with a hint of convexity. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1236-1241. doi : 10.1016/j.crma.2017.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.003/

[1] A. Ambrosetti; H. Brézis; G. Cerami Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543

[2] A. Bahri; H. Berestycki A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc., Volume 267 (1981), pp. 1-32

[3] T. Bartsch; M. Willem On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., Volume 123 (1995) no. 11, pp. 3555-3561

[4] D. Bonheure; B. Noris; T. Weth Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 4, pp. 573-588

[5] C. Cowan; A. Moameni A new variational principle, convexity and supercritical Neumann problems, Trans. Amer. Math. Soc. (2017) (in press)

[6] I. Ekeland; R. Temam Convex Analysis and Variational Problems, American Elsevier Publishing Co., Inc., New York, 1976

[7] D. Gilbarg; N.S. Trudinger Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 Reprint of the (1998) edition

[8] M. Grossi; B. Noris Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., Volume 140 (2012) no. 6, pp. 2141-2154

[9] A. Moameni Non-convex self-dual Lagrangians: new variational principles of symmetric boundary value problems, J. Funct. Anal., Volume 260 (2011), pp. 2674-2715

[10] A. Moameni New variational principles of symmetric boundary value problems, J. Convex Anal., Volume 24 (2017) no. 2, pp. 365-381

[11] A. Moameni, A variational principle for problems in partial differential equations and nonlinear analysis, in preparation.

[12] D. Motreanu; P.D. Panagiotopoulos Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optimization and Its Applications, vol. 29, 1999

[13] E. Serra; P. Tilli Monotonicity constraints and supercritical Neumann problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2001) no. 1, pp. 63-74

[14] M. Struwe Variational Methods, Springer, Berlin, 1990

[15] A. Szulkin Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 3 (1986) no. 2, pp. 77-109

Cited by Sources:

The author is pleased to acknowledge the support of the National Sciences and Engineering Research Council of Canada (grant number 315920).

Comments - Policy