A variational principle is introduced to provide a new formulation and resolution for several boundary value problems with a variational structure. This principle allows one to deal with problems well beyond the weakly compact structure. As a result, we study several super-critical semilinear Elliptic problems.
Un principe variationnel est introduit pour fournir une nouvelle formulation et résolution de nombreux problèmes aux limites avec structure variationnelle. Ce principe permet de considérer des problèmes bien au-delà de la structure faiblement compacte. Ainsi, nous étudions de nombreux probèmes elliptiques semilinéaires supercritiques.
Accepted:
Published online:
Abbas Moameni 1
@article{CRMATH_2017__355_12_1236_0, author = {Abbas Moameni}, title = {A variational principle for problems with a hint of convexity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1236--1241}, publisher = {Elsevier}, volume = {355}, number = {12}, year = {2017}, doi = {10.1016/j.crma.2017.11.003}, language = {en}, }
Abbas Moameni. A variational principle for problems with a hint of convexity. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1236-1241. doi : 10.1016/j.crma.2017.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.003/
[1] Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543
[2] A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc., Volume 267 (1981), pp. 1-32
[3] On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., Volume 123 (1995) no. 11, pp. 3555-3561
[4] Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 4, pp. 573-588
[5] A new variational principle, convexity and supercritical Neumann problems, Trans. Amer. Math. Soc. (2017) (in press)
[6] Convex Analysis and Variational Problems, American Elsevier Publishing Co., Inc., New York, 1976
[7] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 Reprint of the (1998) edition
[8] Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., Volume 140 (2012) no. 6, pp. 2141-2154
[9] Non-convex self-dual Lagrangians: new variational principles of symmetric boundary value problems, J. Funct. Anal., Volume 260 (2011), pp. 2674-2715
[10] New variational principles of symmetric boundary value problems, J. Convex Anal., Volume 24 (2017) no. 2, pp. 365-381
[11] A. Moameni, A variational principle for problems in partial differential equations and nonlinear analysis, in preparation.
[12] Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optimization and Its Applications, vol. 29, 1999
[13] Monotonicity constraints and supercritical Neumann problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2001) no. 1, pp. 63-74
[14] Variational Methods, Springer, Berlin, 1990
[15] Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 3 (1986) no. 2, pp. 77-109
Cited by Sources:
☆ The author is pleased to acknowledge the support of the National Sciences and Engineering Research Council of Canada (grant number 315920).
Comments - Policy