[Non-contrôlabilité à zéro de l'opérateur de Grushin en dimension 2]
We are interested in the exact null controllability of the equation
Nous nous intéressons à la contrôlabilité exacte à zéro de l'équation
Accepté le :
Publié le :
Armand Koenig 1
@article{CRMATH_2017__355_12_1215_0, author = {Armand Koenig}, title = {Non-null-controllability of the {Grushin} operator in {2D}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1215--1235}, publisher = {Elsevier}, volume = {355}, number = {12}, year = {2017}, doi = {10.1016/j.crma.2017.10.021}, language = {en}, }
Armand Koenig. Non-null-controllability of the Grushin operator in 2D. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1215-1235. doi : 10.1016/j.crma.2017.10.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.021/
[1] Lectures on Exponential Decay of Solution of Second-Order Elliptic Equations, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, USA, 1982
[2] On efficient analytic continuation of power series, Math. USSR Sb., Volume 52 (1985) no. 1, pp. 21-39
[3] Null controllability of Kolmogorov-type equations, Math. Control Signals Syst., Volume 26 (2014) no. 1, pp. 145-176
[4] Heat equation on the Heisenberg group: observability and applications, J. Differ. Equ., Volume 262 (2017) no. 8, pp. 4475-4521
[5] Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 67-101
[6] Degenerate parabolic operators of Kolmogorov type with a geometric control condition, ESAIM Control Optim. Calc. Var., Volume 21 (2015) no. 2, pp. 487-512
[7] 2d Grushin-type equations: minimal time and null controllable data, J. Differ. Equ., Volume 259 (2015) no. 11, pp. 5813-5845
[8] Null-controllability of hypoelliptic quadratic differential equations, 2016 | arXiv
[9] Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., Volume 456 (2001) no. 1, pp. 496-524
[10] Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19
[11] Global Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc., Volume 239 (2016) no. 1133
[12] Control and Nonlinearity, Math. Surv. Monogr., vol. 143, American Mathematical Society, Boston, MA, USA, 2007
[13] Resolvent conditions for the control of parabolic equations, J. Funct. Anal., Volume 263 (2012) no. 11, pp. 3641-3673
[14] Controllability of Evolution Equations, Lecture Note Series, vol. 34, Seoul University Press, 1996
[15] B. Helffer, F. Nier, Quantitative analysis of metastability in reversible diffusion Processes via a Witten complex approach: the case with boundary, preprint, 2004, HAL.
[16] Multiples wells in the semi-classical limit I, Commun. Partial Differ. Equ., Volume 9 (1984) no. 4, pp. 337-408
[17] Contrôle exact de l'équation de la chaleur, Commun. Partial Differ. Equ., Volume 20 (1995) no. 1, pp. 335-356
[18] Le calcul des résidus et ses applications à la théorie des fonctions, Gauthier-Villars, 1905
[19] An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer, New York, 2002
[20] On the controllability of anomalous diffusions generated by the fractional laplacian, Math. Control Signals Syst., Volume 18 (2006) no. 3, pp. 260-271
[21] Real and Complex Analysis, McGraw Hill Education, 1986
- Stability Estimates for Initial Data in General Ornstein–Uhlenbeck Equations, Control Theory and Inverse Problems (2025), p. 137 | DOI:10.1007/978-3-031-68046-5_7
- A non-controllability result for the half-heat equation on the whole line based on the prolate spheroidal wave functions and its application to the Grushin equation, Journal of Differential Equations, Volume 433 (2025), p. 27 (Id/No 113306) | DOI:10.1016/j.jde.2025.113306 | Zbl:8031084
- Local controllability of the Korteweg-de Vries equation with the right Dirichlet control, Journal of Differential Equations, Volume 435 (2025), p. 85 (Id/No 113235) | DOI:10.1016/j.jde.2025.113235 | Zbl:8035404
- Null-controllability of the generalized Baouendi-Grushin heat like equations, Journal of Evolution Equations, Volume 25 (2025) no. 2, p. 39 (Id/No 43) | DOI:10.1007/s00028-025-01069-7 | Zbl:8035737
- Quantitative observability for one-dimensional Schrödinger equations with potentials, Journal of Functional Analysis, Volume 288 (2025) no. 2, p. 39 (Id/No 110695) | DOI:10.1016/j.jfa.2024.110695 | Zbl:1554.35278
- Null-controllability properties of the generalized two-dimensional Baouendi-Grushin equation with non-rectangular control sets, Annales Henri Lebesgue, Volume 6 (2023), pp. 1479-1522 | DOI:10.5802/ahl.193 | Zbl:1534.35250
- Quantitative spectral inequalities for the anisotropic Shubin operators and applications to null-controllability, Comptes Rendus. Mathématique, Volume 362 (2024) no. G12, p. 1635 | DOI:10.5802/crmath.670
- Cost evaluation of finite dimensional and approximate null-controllability for the one dimensional half-heat equation, Mathematical Control and Related Fields, Volume 14 (2024) no. 1, pp. 1-15 | DOI:10.3934/mcrf.2022054 | Zbl:1536.93086
- Ensemble controllability of parabolic type equations, Systems Control Letters, Volume 183 (2024), p. 10 (Id/No 105683) | DOI:10.1016/j.sysconle.2023.105683 | Zbl:1536.93071
- Exact observability properties of subelliptic wave and Schrödinger equations, Séminaire de théorie spectrale et géométrie, Volume 36 (2024), p. 51 | DOI:10.5802/tsg.373
- Subelliptic wave equations are never observable, Analysis PDE, Volume 16 (2023) no. 3, pp. 643-678 | DOI:10.2140/apde.2023.16.643 | Zbl:1533.35066
- Sharp resolvent estimate for the damped-wave Baouendi-Grushin operator and applications, Communications in Mathematical Physics, Volume 400 (2023) no. 1, pp. 541-637 | DOI:10.1007/s00220-022-04606-4 | Zbl:1522.35159
- Observability of Baouendi-Grushin-type equations through resolvent estimates, Journal of the Institute of Mathematics of Jussieu, Volume 22 (2023) no. 2, pp. 541-579 | DOI:10.1017/s1474748021000207 | Zbl:1508.93045
- Time optimal observability for Grushin Schrödinger equation, Analysis PDE, Volume 15 (2022) no. 6, pp. 1487-1530 | DOI:10.2140/apde.2022.15.1487 | Zbl:1501.35337
- Null controllability and inverse source problem for stochastic Grushin equation with boundary degeneracy and singularity, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 28 (2022), p. 34 (Id/No 43) | DOI:10.1051/cocv/2022027 | Zbl:1497.93026
- Null controllability of the parabolic spherical Grushin equation, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 28 (2022), p. 29 (Id/No 70) | DOI:10.1051/cocv/2022055 | Zbl:1511.93022
- Tunneling estimates and approximate controllability for hypoelliptic equations, Memoirs of the American Mathematical Society, 1357, Providence, RI: American Mathematical Society (AMS), 2022 | DOI:10.1090/memo/1357 | Zbl:1500.35002
- Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type, Journal de l'École Polytechnique – Mathématiques, Volume 8 (2021), pp. 1459-1513 | DOI:10.5802/jep.176 | Zbl:1475.35377
- Critical time for the observability of Kolmogorov-type equations, Journal de l'École Polytechnique – Mathématiques, Volume 8 (2021), pp. 859-894 | DOI:10.5802/jep.160 | Zbl:1465.35289
- Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method, Journal of Evolution Equations, Volume 21 (2021) no. 4, pp. 4799-4843 | DOI:10.1007/s00028-021-00733-y | Zbl:1485.93057
- Minimal time issues for the observability of Grushin-type equations, Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 247-312 | DOI:10.5802/aif.3313 | Zbl:1448.35316
- Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability, Bulletin des Sciences Mathématiques, Volume 165 (2020), p. 52 (Id/No 102914) | DOI:10.1016/j.bulsci.2020.102914 | Zbl:1454.93024
- Control of the Grushin equation: non-rectangular control region and minimal time, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 26 (2020), p. 18 (Id/No 3) | DOI:10.1051/cocv/2019001 | Zbl:1447.93025
- Null-controllability of linear parabolic-transport systems, Journal de l'École Polytechnique – Mathématiques, Volume 7 (2020), pp. 743-802 | DOI:10.5802/jep.127 | Zbl:1443.93030
- Lack of null-controllability for the fractional heat equation and related equations, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 6, pp. 3130-3160 | DOI:10.1137/19m1256610 | Zbl:1453.93021
- Backward uniqueness results for some parabolic equations in an infinite rod, Mathematical Control and Related Fields, Volume 9 (2019) no. 4, pp. 673-696 | DOI:10.3934/mcrf.2019046 | Zbl:1442.35178
Cité par 26 documents. Sources : Crossref, zbMATH
☆ This work was partially supported by the ERC advanced grant SCAPDE, seventh framework program, agreement No. 320845.
Commentaires - Politique