We obtain sufficient conditions for the existence and uniqueness of a positive compact almost automorphic solution to a logistic equation with discrete and continuous delay. Moreover, we provide a counterexample to some results in literature which deal with the uniqueness of almost periodic solutions to logistic type equations.
Nous obtenons des conditions suffisantes pour l'existence et l'unicité d'une solution positive et compacte presque automorphe, d'une équation logistique avec retard discret et continu. De plus, nous donnons un contre-exemple à des résultats publiés, qui traitent l'unicité des solutions presque périodiques des équations de type logistique.
Accepted:
Published online:
Nadia Drisi 1; Brahim Es-sebbar 1
@article{CRMATH_2017__355_12_1208_0, author = {Nadia Drisi and Brahim Es-sebbar}, title = {Almost automorphic solutions to logistic equations with discrete and continuous delay}, journal = {Comptes Rendus. Math\'ematique}, pages = {1208--1214}, publisher = {Elsevier}, volume = {355}, number = {12}, year = {2017}, doi = {10.1016/j.crma.2017.11.004}, language = {en}, }
TY - JOUR AU - Nadia Drisi AU - Brahim Es-sebbar TI - Almost automorphic solutions to logistic equations with discrete and continuous delay JO - Comptes Rendus. Mathématique PY - 2017 SP - 1208 EP - 1214 VL - 355 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2017.11.004 LA - en ID - CRMATH_2017__355_12_1208_0 ER -
Nadia Drisi; Brahim Es-sebbar. Almost automorphic solutions to logistic equations with discrete and continuous delay. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1208-1214. doi : 10.1016/j.crma.2017.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.004/
[1] Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci. USA, Volume 52 (1964) no. 4, pp. 907-910
[2] Almost automorphic evolution equations with compact almost automorphic solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 354 (2016) no. 11, pp. 1071-1077
[3] On the existence and uniqueness of almost periodic solutions for delay logistic equations, Appl. Math. Comput., Volume 136 (2003) no. 2, pp. 487-494
[4] Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer Science & Business Media, Dordrecht, The Netherlands, 1992
[5] Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993
[6] A linear, almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., Volume 82 (1981) no. 2, pp. 199-205
[7] Almost periodic solutions for logistic equations with infinite delay, Appl. Math. Lett., Volume 21 (2008) no. 2, pp. 113-118
[8] Some new results for a logistic almost periodic system with infinite delay and discrete delay, Nonlinear Anal., Real World Appl., Volume 10 (2009) no. 3, pp. 1255-1264
[9] Almost periodic linear differential equations with non-separated solutions, J. Funct. Anal., Volume 237 (2006) no. 2, pp. 402-426
[10] Almost periodic solutions for delay logistic equations with almost periodic time dependence, Differ. Integral Equ., Volume 9 (1996) no. 2, pp. 335-342
[11] Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., Volume 136 (1998) no. 647
[12] Almost automorphic functions on groups, Amer. J. Math., Volume 87 (1965) no. 3, pp. 719-751
[13] The stability and almost periodic solution for generalized logistic almost periodic system with delays, Int. J. Biomath., Volume 4 (2011) no. 03, pp. 313-328
Cited by Sources:
Comments - Policy