Comptes Rendus
Ordinary differential equations
Almost automorphic solutions to logistic equations with discrete and continuous delay
Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1208-1214.

We obtain sufficient conditions for the existence and uniqueness of a positive compact almost automorphic solution to a logistic equation with discrete and continuous delay. Moreover, we provide a counterexample to some results in literature which deal with the uniqueness of almost periodic solutions to logistic type equations.

Nous obtenons des conditions suffisantes pour l'existence et l'unicité d'une solution positive et compacte presque automorphe, d'une équation logistique avec retard discret et continu. De plus, nous donnons un contre-exemple à des résultats publiés, qui traitent l'unicité des solutions presque périodiques des équations de type logistique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.11.004

Nadia Drisi 1; Brahim Es-sebbar 1

1 Université Cadi Ayyad, Faculté des sciences Semlalia, Département de mathématiques, B.P. 2390, Marrakesh, Morocco
@article{CRMATH_2017__355_12_1208_0,
     author = {Nadia Drisi and Brahim Es-sebbar},
     title = {Almost automorphic solutions to logistic equations with discrete and continuous delay},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1208--1214},
     publisher = {Elsevier},
     volume = {355},
     number = {12},
     year = {2017},
     doi = {10.1016/j.crma.2017.11.004},
     language = {en},
}
TY  - JOUR
AU  - Nadia Drisi
AU  - Brahim Es-sebbar
TI  - Almost automorphic solutions to logistic equations with discrete and continuous delay
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1208
EP  - 1214
VL  - 355
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2017.11.004
LA  - en
ID  - CRMATH_2017__355_12_1208_0
ER  - 
%0 Journal Article
%A Nadia Drisi
%A Brahim Es-sebbar
%T Almost automorphic solutions to logistic equations with discrete and continuous delay
%J Comptes Rendus. Mathématique
%D 2017
%P 1208-1214
%V 355
%N 12
%I Elsevier
%R 10.1016/j.crma.2017.11.004
%G en
%F CRMATH_2017__355_12_1208_0
Nadia Drisi; Brahim Es-sebbar. Almost automorphic solutions to logistic equations with discrete and continuous delay. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1208-1214. doi : 10.1016/j.crma.2017.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.004/

[1] S. Bochner Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci. USA, Volume 52 (1964) no. 4, pp. 907-910

[2] B. Es-sebbar Almost automorphic evolution equations with compact almost automorphic solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 354 (2016) no. 11, pp. 1071-1077

[3] C. Feng On the existence and uniqueness of almost periodic solutions for delay logistic equations, Appl. Math. Comput., Volume 136 (2003) no. 2, pp. 487-494

[4] K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer Science & Business Media, Dordrecht, The Netherlands, 1992

[5] J.K. Hale; S.M.V. Lunel Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993

[6] R.A. Johnson A linear, almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., Volume 82 (1981) no. 2, pp. 199-205

[7] H.X. Li Almost periodic solutions for logistic equations with infinite delay, Appl. Math. Lett., Volume 21 (2008) no. 2, pp. 113-118

[8] X. Meng; L. Chen; X. Wang Some new results for a logistic almost periodic system with infinite delay and discrete delay, Nonlinear Anal., Real World Appl., Volume 10 (2009) no. 3, pp. 1255-1264

[9] R. Ortega; M. Tarallo Almost periodic linear differential equations with non-separated solutions, J. Funct. Anal., Volume 237 (2006) no. 2, pp. 402-426

[10] G. Seifert Almost periodic solutions for delay logistic equations with almost periodic time dependence, Differ. Integral Equ., Volume 9 (1996) no. 2, pp. 335-342

[11] W. Shen; Y. Yi Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., Volume 136 (1998) no. 647

[12] W.A. Veech Almost automorphic functions on groups, Amer. J. Math., Volume 87 (1965) no. 3, pp. 719-751

[13] X. Zhuo The stability and almost periodic solution for generalized logistic almost periodic system with delays, Int. J. Biomath., Volume 4 (2011) no. 03, pp. 313-328

Cited by Sources:

Comments - Policy