In the present paper, we study the ordinariness of coverings of stable curves. Let be a morphism of stable curves over a discrete valuation ring R with algebraically closed residue field of characteristic . Write S for Spec R and η (resp. s) for the generic point (resp. closed point) of S. Suppose that the generic fiber of X is smooth over η, that the morphism over η on the generic fiber induced by f is a Galois étale covering (hence is smooth over η too) whose Galois group is a solvable group G, that the genus of the normalization of each irreducible component of the special fiber is ≥2, and that is ordinary. Then we have that the morphism over s induced by f is an admissible covering. This result extends a result of M. Raynaud concerning the ordinariness of coverings to the case where is a stable curve. If, moreover, we suppose that G is a p-group, and that the p-rank of the normalization of each irreducible component of is ≥2, we can give a numerical criterion for the admissibility of .
Dans la présente Note, nous étudions l'ordinarité des revêtements de courbes stables. Soit un morphisme de courbes stables sur un anneau de valuation discrète R, dont le corps résiduel est algébriquement clos, de caractéristique . Notons S pour et η (resp. s) le point générique (resp. le point fermé) de S. Supposons que la fibre générique de X est lisse au-dessus de η, que le morphisme des fibres génériques induit par f au-dessus de η soit un revêtement étale galoisien (et donc est aussi lisse au-dessus de η), dont le groupe de Galois G est résoluble, que le genre des normalisations des composantes irréductibles de la fibre spéciale soit au moins 2 et que soit ordinaire. Alors, le morphisme induit par f au-dessus de s est un revêtement admissible. Ce résultat étend un énoncé de M. Raynaud sur l'ordinarité des revêtements lorsque est une courbe stable. Si, de plus, on suppose que G est un p-groupe et que le p-rang de la normalisation de chaque composante irréductible de est au moins 2, nous pouvons donner un critère numérique pour l'admissibilité de .
Accepted:
Published online:
Yu Yang 1
@article{CRMATH_2018__356_1_17_0, author = {Yu Yang}, title = {On the ordinariness of coverings of stable curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {17--26}, publisher = {Elsevier}, volume = {356}, number = {1}, year = {2018}, doi = {10.1016/j.crma.2017.11.013}, language = {en}, }
Yu Yang. On the ordinariness of coverings of stable curves. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 17-26. doi : 10.1016/j.crma.2017.11.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.013/
[1] The p-rank of curves and covers of curves, Luminy, 1998 (Progress in Mathematics), Volume vol. 187, Birkhäuser, Basel, Switzerland (2000), pp. 267-277
[2] Étale p-covers in characteristic p, Compos. Math., Volume 52 (1984), pp. 31-45
[3] Y. Hoshi, On the pro-p absolute anabelian geometry of proper hyperbolic curves, RIMS Preprint, 1860.
[4] Models of curves and finite covers, Compos. Math., Volume 118 (1999), pp. 61-102
[5] The geometry of the compactification of the Hurwitz scheme, Publ. Res. Inst. Math. Sci., Volume 31 (1995), pp. 355-441
[6] The profinite Grothendieck conjecture for closed hyperbolic curves over number fields, J. Math. Sci. Univ. Tokyo, Volume 3 (1996), pp. 571-627
[7] p-Groupes et réduction semi-stable des courbes, The Grothendieck Festschrift, Vol. III, Progress in Mathematics, vol. 88, Birkhäuser Boston, Boston, MA, USA, 1990, pp. 179-197
[8] Mauvaise réduction des courbes et p-rang, C. R. Acad. Sci. Paris, Ser. I, Volume 319 (1994), pp. 1279-1282
[9] Revêtements de la droite affine en caractéristique et conjecture d'Abhyankar, Invent. Math., Volume 116 (1994), pp. 425-462
[10] p-Rank and semi-stable reduction of curves, C. R. Acad. Sci. Paris Ser. I, Volume 326 (1998), pp. 63-68
[11] p-Rank and semi-stable reduction of curves II, Math. Ann., Volume 312 (1998), pp. 625-639
[12] Resolution of nonsingularities of families of curves, Publ. Res. Inst. Math. Sci., Volume 40 (2004), pp. 1291-1336
[13] On the existence of non-finite coverings of stable curves over complete discrete valuation rings, Math. J. Okayama Univ. (2018) http://www.kurims.kyoto-u.ac.jp/~yuyang/papersandpreprints/WRNFA.pdf (in press, see also)
[14] Formulas for local and global p-ranks of coverings of curves, 1863 http://www.kurims.kyoto-u.ac.jp/~yuyang/papersandpreprints/FLG.pdf (RIMS Preprint 1863, see also)
[15] On the boundedness and graph-theoreticity of p-ranks of coverings of curves, 1864 http://www.kurims.kyoto-u.ac.jp/~yuyang/papersandpreprints/BG.pdf (RIMS Preprint 1864, see also)
Cited by Sources:
Comments - Policy