Let q be a positive integer. Recently, Niu and Liu proved that, if , then the product is not a powerful number. In this note, we prove (1) that, for any odd prime power ℓ and , the product is not a powerful number, and (2) that, for any positive odd integer ℓ, there exists an integer such that, for any positive integer , the product is not a powerful number.
Soit q un entier positif. Récemment, Niu et Liu ont montré que, si , alors le produit n'est pas un nombre puissant. Dans cette Note, nous montrons : (1) que le produit n'est pas un nombre puissant pour toute puissance ℓ d'un nombre premier impair et ; (2) que, pour tout nombre impair positif ℓ, il existe un entier tel que pour tout entier , le produit ne soit pas un nombre puissant.
Accepted:
Published online:
Quan-Hui Yang 1; Qing-Qing Zhao 2
@article{CRMATH_2018__356_1_13_0, author = {Quan-Hui Yang and Qing-Qing Zhao}, title = {Powerful numbers in (1\protect\textsuperscript{\protect\emph{\ensuremath{\ell}}}\,+\,\protect\emph{q}\protect\textsuperscript{\protect\emph{\ensuremath{\ell}}})(2\protect\textsuperscript{\protect\emph{\ensuremath{\ell}}}\,+\,\protect\emph{q}\protect\textsuperscript{\protect\emph{\ensuremath{\ell}}})\ensuremath{\cdots}(\protect\emph{n}\protect\textsuperscript{\protect\emph{\ensuremath{\ell}}}\,+\,\protect\emph{q}\protect\textsuperscript{\protect\emph{\ensuremath{\ell}}})}, journal = {Comptes Rendus. Math\'ematique}, pages = {13--16}, publisher = {Elsevier}, volume = {356}, number = {1}, year = {2018}, doi = {10.1016/j.crma.2017.11.015}, language = {en}, }
Quan-Hui Yang; Qing-Qing Zhao. Powerful numbers in (1ℓ + qℓ)(2ℓ + qℓ)⋯(nℓ + qℓ). Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 13-16. doi : 10.1016/j.crma.2017.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.015/
[1] Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory, Volume 128 (2008), pp. 1807-1846
[2] On the products II, J. Number Theory, Volume 144 (2014), pp. 176-187
[3] On the products , J. Number Theory, Volume 133 (2013), pp. 2470-2474
[4] Squares in , J. Number Theory, Volume 128 (2008), pp. 2488-2491
[5] On squares in polynomial products, Monatshefte Math., Volume 159 (2010), pp. 215-223
[6] A nice and tricky lemma (lifting the exponent), Math. Reflec., Volume 2007 (2007) no. 3
[7] Neither nor is a perfect square, Integers, Volume 9 (2009), pp. 177-180
[8] Powerful numbers, Amer. Math. Mon., Volume 77 (1970), pp. 848-852
[9] On the occurrence of perfect squares among values of certain polynomial products, Amer. Math. Mon., Volume 123 (2016), pp. 597-599
[10] A note on the products and , Math. Commun., Volume 21 (2016), pp. 109-114
[11] A note on the products , J. Number Theory, Volume 130 (2010), pp. 187-191
[12] Squares in and p-adic valuation, Asian-Eur. J. Math., Volume 3 (2010), pp. 329-333
[13] On the products , J. Number Theory, Volume 180 (2017), pp. 403-409
[14] Handbook of Number Theory I, Springer, The Netherlands, 2006
[15] Squares in polynomial product sequences | arXiv
[16] Diophantine equations with products of consecutive values of a quadratic polynomial, J. Number Theory, Volume 131 (2011), pp. 1840-1851
[17] Powers in , Funct. Approx. Comment. Math., Volume 46 (2012), pp. 7-13
[18] Powerful numbers in , J. Number Theory, Volume 132 (2012), pp. 2630-2635
Cited by Sources:
Comments - Policy