We show that the operator norm of the composition , where M is the maximal operator and is a rough homogeneous singular integral with angular part , depends quadratically on , and that this dependence is sharp.
Nous montrons que la norme d'opérateur du composé , où M est l'opérateur maximal et est une intégrale singulière homogène rugueuse de partie angulaire , dépend de manière quadratique de et que cette dépendance est précise.
Accepted:
Published online:
Andrei K. Lerner 1
@article{CRMATH_2018__356_1_77_0, author = {Andrei K. Lerner}, title = {A note on weighted bounds for rough singular integrals}, journal = {Comptes Rendus. Math\'ematique}, pages = {77--80}, publisher = {Elsevier}, volume = {356}, number = {1}, year = {2018}, doi = {10.1016/j.crma.2017.11.016}, language = {en}, }
Andrei K. Lerner. A note on weighted bounds for rough singular integrals. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 77-80. doi : 10.1016/j.crma.2017.11.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.016/
[1] Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc., Volume 340 (1993) no. 1, pp. 253-272
[2] On singular integrals, Amer. J. Math., Volume 78 (1956), pp. 289-309
[3] A sparse domination principle for rough singular integrals, Anal. PDE, Volume 10 (2017) no. 5, pp. 1255-1284
[4] Sparse bounds for maximal rough singular integrals via the Fourier transform (preprint, available at) | arXiv
[5] Maximal and singular integral operators via Fourier transform estimates, Invent. Math., Volume 84 (1986) no. 3, pp. 541-561
[6] Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2009
[7] Quantitative weighted estimates for rough homogeneous singular integrals, Isr. J. Math., Volume 218 (2017) no. 1, pp. 133-164
[8] A weak type estimate for rough singular integrals, Rev. Mat. Iberoam. (2017) (in press, available at) | arXiv
[9] Optimal exponents in weighted estimates without examples, Math. Res. Lett., Volume 22 (2015) no. 1, pp. 183-201
[10] Singular integral operators with rough convolution kernels, J. Amer. Math. Soc., Volume 9 (1996) no. 1, pp. 95-105
[11] Note on the class , Stud. Math., Volume 32 (1969), pp. 305-310
Cited by Sources:
Comments - Policy