In this article, we prove that the compact simple Lie groups for , for , for , , and admit left-invariant Einstein metrics that are not geodesic orbit. This gives a positive answer to an open problem recently posed by Nikonorov.
Dans cet article, nous démontrons que les groupes simples compacts pour , pour , pour , , , et admettent des métriques d'Einstein invariantes à gauche, dont une géodésique maximale n'est pas une orbite d'un sous-groupe à un paramètre du groupe des isométries complet. Ceci fournit une réponse positive à un problème récemment posé par Nikonorov.
Accepted:
Published online:
Huibin Chen 1; Zhiqi Chen 1; Shaoqiang Deng 1
@article{CRMATH_2018__356_1_81_0, author = {Huibin Chen and Zhiqi Chen and Shaoqiang Deng}, title = {Compact simple {Lie} groups admitting left-invariant {Einstein} metrics that are not geodesic orbit}, journal = {Comptes Rendus. Math\'ematique}, pages = {81--84}, publisher = {Elsevier}, volume = {356}, number = {1}, year = {2018}, doi = {10.1016/j.crma.2017.11.018}, language = {en}, }
TY - JOUR AU - Huibin Chen AU - Zhiqi Chen AU - Shaoqiang Deng TI - Compact simple Lie groups admitting left-invariant Einstein metrics that are not geodesic orbit JO - Comptes Rendus. Mathématique PY - 2018 SP - 81 EP - 84 VL - 356 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2017.11.018 LA - en ID - CRMATH_2018__356_1_81_0 ER -
%0 Journal Article %A Huibin Chen %A Zhiqi Chen %A Shaoqiang Deng %T Compact simple Lie groups admitting left-invariant Einstein metrics that are not geodesic orbit %J Comptes Rendus. Mathématique %D 2018 %P 81-84 %V 356 %N 1 %I Elsevier %R 10.1016/j.crma.2017.11.018 %G en %F CRMATH_2018__356_1_81_0
Huibin Chen; Zhiqi Chen; Shaoqiang Deng. Compact simple Lie groups admitting left-invariant Einstein metrics that are not geodesic orbit. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 81-84. doi : 10.1016/j.crma.2017.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.018/
[1] Einstein metrics on the symmetric group which are not naturally reductive, Velico Tarnovo, Bulgaria 2014, World Scientific (2015), pp. 1-22
[2] New Einstein metrics on the Lie group which are not naturally reductive, Geom. Imaging Comput., Volume 2 (2015) no. 2, pp. 77-108
[3] New non-naturally reductive Einstein metrics on exceptional simple Lie groups, 2016 (Preprint) | arXiv
[4] Non-naturally reductive Einstein metrics on the compact simple Lie group , Ann. Glob. Anal. Geom., Volume 46 (2014), pp. 103-115
[5] Invariant Einstein metrics on three-locally-symmetric spaces, Commun. Anal. Geom., Volume 24 (2016) no. 4, pp. 769-792
[6] Non-naturally reductive Einstein metrics on exceptional Lie groups, J. Geom. Phys., Volume 116 (2017), pp. 152-186
[7] Riemannian manifolds with homogeneous geodesics, Boll. Unione Mat. Ital., B (7), Volume 5 (1991) no. 1, pp. 189-246
[8] Left Invariant Einstein Metrics on That Are Not Naturally Reductive, Osaka University, 1994 Master Thesis (in Japanese) English Translation: Osaka University RPM 96010 (preprint series), 1996
[9] Classification of generalized Wallach spaces, Geom. Dedic., Volume 181 (2016) no. 1, pp. 193-212
[10] On left-invariant Einstein Riemannian metrics that are not geodesic orbit, Transform. Groups (2017) (in press) | arXiv
[11] New Einstein metrics on , Differ. Geom. Appl., Volume 51 (2017), pp. 189-202
Cited by Sources:
☆ Supported by NSFC (No. 11671212, 51535008) of China.
Comments - Policy