Let be the linear space of functions with a condition for . Here denotes the fractional part of x. Beurling pointed out that the problem of how well a constant function can be approximated by functions in is closely related to the zero-free region of the Riemann zeta function. More precisely, Báez-Duarte gave a zero-free region related to a -norm estimation of a constant function by using the Dirichlet series for the zeta function. In this paper, we consider the -norm estimation of a constant function and give a wider zero-free region than that of the Báez-Duarte result.
Soit l'espace vectoriel de fonctions satisfaisant la condition pour , où désigne la partie fractionnaire de x. Beurling a indiqué que le problème d'approximation d'une fonction constante par fonctions dans est étroitement lié à la région sans zéro de la fonction zêta de Riemann. Plus précisement, Báez-Duarte a donné une région sans zéro liée à une estimation de la norme d'une fonction constante en utilisant les séries de Dirichlet pour la fonction zêta. Dans cet article, nous considerons une estimation de la norme d'une fonction constante et donnons une région sans zéro plus large que celle du résultat de Báez-Duarte.
Accepted:
Published online:
Jongho Yang 1
@article{CRMATH_2018__356_2_133_0, author = {Jongho Yang}, title = {Geometric sequences and zero-free region of the zeta function}, journal = {Comptes Rendus. Math\'ematique}, pages = {133--137}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2017.11.021}, language = {en}, }
Jongho Yang. Geometric sequences and zero-free region of the zeta function. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 133-137. doi : 10.1016/j.crma.2017.11.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.021/
[1] On Beurling's real variable reformulation of the Riemann hypothesis, Adv. Math., Volume 101 (1993), pp. 10-30
[2] Completeness problem and the Riemann hypothesis: an annotated bibliography, Surveys in Number Theory: Papers from the Millennial Conference on Number Theory, CRC Press, Boca Raton, FL, USA, 2002, pp. 1-28
[3] The Nyman–Beurling equivalent form for the Riemann hypothesis, Expo. Math., Volume 18 (2000), pp. 131-138
[4] A real variable restatement of Riemann's hypothesis, Isr. J. Math., Volume 48 (1984), pp. 56-68
[5] A closure problem related to the Riemann zeta-function, Proc. Natl. Acad. Sci. USA, Volume 41 (1955), pp. 312-314
[6] The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), Volume 175 (2012), pp. 541-566
[7] The distribution of the summatory function of the Möbius function, Proc. Lond. Math. Soc., Volume 89 (2004), pp. 361-389
[8] On the One-Dimensional Translation Group and Semi-group in Certain Function Spaces, University of Uppsala, Sweden, 1950 (PhD thesis)
[9] Disproof of the Mertens conjecture, J. Reine Angew. Math., Volume 357 (1985), pp. 138-160
[10] Oscillatory properties of . III, Acta Arith., Volume 43 (1984), pp. 105-113
[11] A note on Nyman–Beurling's approach to the Riemann hypothesis, Integral Equ. Oper. Theory, Volume 83 (2015), pp. 447-449
[12] A generalization of Beurling's criterion for the Riemann hypothesis, J. Number Theory, Volume 164 (2016), pp. 299-302
Cited by Sources:
Comments - Policy