[Suites géométriques et région sans zéro de la fonction zêta]
Let
Soit
Accepté le :
Publié le :
Jongho Yang 1
@article{CRMATH_2018__356_2_133_0, author = {Jongho Yang}, title = {Geometric sequences and zero-free region of the zeta function}, journal = {Comptes Rendus. Math\'ematique}, pages = {133--137}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2017.11.021}, language = {en}, }
Jongho Yang. Geometric sequences and zero-free region of the zeta function. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 133-137. doi : 10.1016/j.crma.2017.11.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.021/
[1] On Beurling's real variable reformulation of the Riemann hypothesis, Adv. Math., Volume 101 (1993), pp. 10-30
[2] Completeness problem and the Riemann hypothesis: an annotated bibliography, Surveys in Number Theory: Papers from the Millennial Conference on Number Theory, CRC Press, Boca Raton, FL, USA, 2002, pp. 1-28
[3] The Nyman–Beurling equivalent form for the Riemann hypothesis, Expo. Math., Volume 18 (2000), pp. 131-138
[4] A real variable restatement of Riemann's hypothesis, Isr. J. Math., Volume 48 (1984), pp. 56-68
[5] A closure problem related to the Riemann zeta-function, Proc. Natl. Acad. Sci. USA, Volume 41 (1955), pp. 312-314
[6] The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), Volume 175 (2012), pp. 541-566
[7] The distribution of the summatory function of the Möbius function, Proc. Lond. Math. Soc., Volume 89 (2004), pp. 361-389
[8] On the One-Dimensional Translation Group and Semi-group in Certain Function Spaces, University of Uppsala, Sweden, 1950 (PhD thesis)
[9] Disproof of the Mertens conjecture, J. Reine Angew. Math., Volume 357 (1985), pp. 138-160
[10] Oscillatory properties of
[11] A note on Nyman–Beurling's approach to the Riemann hypothesis, Integral Equ. Oper. Theory, Volume 83 (2015), pp. 447-449
[12] A generalization of Beurling's criterion for the Riemann hypothesis, J. Number Theory, Volume 164 (2016), pp. 299-302
Cité par Sources :
Commentaires - Politique