Let . We show how the fundamental theorem of surface theory for surfaces of class over a simply-connected open subset of established in 2005 by S. Mardare can be extended to surfaces of class when ω is in addition bounded and has a Lipschitz-continuous boundary. Then we establish a nonlinear Korn inequality for surfaces of class . Finally, we show that the mapping that defines in this fashion a surface of class , unique up to proper isometries of , in terms of its two fundamental forms is locally Lipschitz-continuous.
Soit . Nous montrons comment le théorème fondamental de la théorie des surfaces de classe sur un ouvert simplement connexe ω de établi par S. Mardare in 2005 peut être étendu à des surfaces de classe lorsque ω est de plus borné et de frontière lipschitzienne. Ensuite, nous établissons une inégalité de Korn non linéaire pour des surfaces de classe . Nous établissons enfin que l'application qui définit une surface de classe à une isométrie propre de près en fonction de ses deux formes fondamentales est localement lipschitzienne.
Accepted:
Published online:
Philippe G. Ciarlet 1; Cristinel Mardare 2
@article{CRMATH_2018__356_1_85_0, author = {Philippe G. Ciarlet and Cristinel Mardare}, title = {\protect\emph{W}\protect\textsuperscript{2,\protect\emph{p}}-estimates for surfaces in terms of their two fundamental forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {85--91}, publisher = {Elsevier}, volume = {356}, number = {1}, year = {2018}, doi = {10.1016/j.crma.2017.12.003}, language = {en}, }
Philippe G. Ciarlet; Cristinel Mardare. W2,p-estimates for surfaces in terms of their two fundamental forms. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 85-91. doi : 10.1016/j.crma.2017.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.12.003/
[1] Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, 1976
[2] Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013
[3] Nonlinear Korn inequalities in and immersions in , , considered as functions of their metric tensors in , J. Math. Pures Appl., Volume 105 (2016), pp. 873-906
[4] P.G. Ciarlet, C. Mardare, A surface in is a locally Lipschitz-continuous function of its fundamental forms in and , , in preparation.
[5] Eine Vorlesung über Differentialgeometrie, Springer, Berlin, 1973 (English translation: A Course in Differential Geometry, Springer, Berlin, 1978)
[6] On Pfaff systems with coefficients and their applications in differential geometry, J. Math. Pures Appl., Volume 84 (2005), pp. 1659-1692
[7] On systems of first order linear partial differential equations with coefficients, Adv. Differ. Equ., Volume 12 (2007), pp. 301-360
Cited by Sources:
Comments - Policy