We prove that the set GP of all nonzero generalized pentagonal numbers is an additive uniqueness set; if a multiplicative function f satisfies the equation
Nous prouvons que l'ensemble GP de tous les nombres pentagonaux généralisés non nuls est un ensemble d'unicité additive ; si une fonction multiplicative f satisfait l'équation
Accepted:
Published online:
Byungchan Kim 1; Ji Young Kim 2; Chong Gyu Lee 3; Poo-Sung Park 4
@article{CRMATH_2018__356_2_125_0, author = {Byungchan Kim and Ji Young Kim and Chong Gyu Lee and Poo-Sung Park}, title = {Multiplicative functions additive on generalized pentagonal numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {125--128}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2017.12.011}, language = {en}, }
TY - JOUR AU - Byungchan Kim AU - Ji Young Kim AU - Chong Gyu Lee AU - Poo-Sung Park TI - Multiplicative functions additive on generalized pentagonal numbers JO - Comptes Rendus. Mathématique PY - 2018 SP - 125 EP - 128 VL - 356 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2017.12.011 LA - en ID - CRMATH_2018__356_2_125_0 ER -
Byungchan Kim; Ji Young Kim; Chong Gyu Lee; Poo-Sung Park. Multiplicative functions additive on generalized pentagonal numbers. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 125-128. doi : 10.1016/j.crma.2017.12.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.12.011/
[1] Characterization of arithmetic functions that preserve the sum-of-squares operation, Acta Math. Sin., Volume 30 (2014), pp. 689-695
[2] Multiplicative functions satisfying the equation , Math. Slovaca, Volume 46 (1996), pp. 165-171
[3] Additive uniqueness sets for multiplicative functions, Publ. Math. (Debr.), Volume 55 (1999), pp. 237-243
[4] On multiplicative functions which are additive on sums of primes, Aequ. Math., Volume 86 (2013), pp. 81-89
[5] A characterization of the identity function with equation , Combinatorica, Volume 31 (2011), pp. 697-701
[6] Multiplicative functions commutable with sums of squares, Int. J. Number Theory (2018) (in press) | DOI
[7] On k-additive uniqueness of the set of squares for multiplicative functions, Aequ. Math. (2018) (in press) | DOI
[8] On multiplicative functions which are additive on almost primes, Publ. Math. (Debr.) (2018) (in press)
[9] Additive uniqueness sets for arithmetic functions, J. Number Theory, Volume 42 (1992), pp. 232-246
Cited by Sources:
Comments - Policy