Recently, motivated by Stanley's sequences, Kiss, Sándor, and Yang introduced a new type sequence: a sequence A of nonnegative integers is called an -covering sequence if there exists an integer such that, if , then there exist , such that form a k-term arithmetic progression. They prove that there exists an -covering sequence A such that . In this note, we prove that there exists an -covering sequence A such that .
Motivés par la définition des suites de Stanley, Kiss, Sándor et Yang ont récemment introduit un nouveau type de suites : une suite d'entiers positifs ou nuls A est dite s'il existe un entier tel que, pour tout , il existe , tels que soit une progression arithmétique à k termes. Ils démontrent qu'il existe une suite d'entiers A qui est et satisfait . Nous montrons ici qu'il en existe une satisfaisant .
Accepted:
Published online:
Yong-Gao Chen 1
@article{CRMATH_2018__356_2_121_0, author = {Yong-Gao Chen}, title = {On {\protect\emph{A}\protect\emph{P}\protect\textsubscript{3}-covering} sequences}, journal = {Comptes Rendus. Math\'ematique}, pages = {121--124}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2017.12.013}, language = {en}, }
Yong-Gao Chen. On AP3-covering sequences. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 121-124. doi : 10.1016/j.crma.2017.12.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.12.013/
[1] On the counting function of Stanley sequences, Publ. Math. (Debr.), Volume 82 (2013), pp. 91-95
[2] Greedy algorithm, arithmetic progressions, subset sums and divisibility, Discrete Math., Volume 200 (1999), pp. 119-135
[3] Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comput., Volume 33 (1979), pp. 1353-1359
[4] On generalized Stanley sequences | arXiv
[5] On the growth of the counting function of Stanley sequences, Discrete Math., Volume 311 (2011), pp. 560-562
[6] A.M. Odlyzko, R.P. Stanley, Some curious sequences constructed with the greedy algorithm, Bell Laboratories internal memorandum, 1978.
Cited by Sources:
☆ The work is supported by the National Natural Science Foundation of China, Grant No. 11771211 and by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Comments - Policy