We have recently introduced the trimming property for a complete Riemannian manifold as a necessary and sufficient condition for bounded maps to be strongly dense in when . We prove in this note that, even under a weaker notion of approximation, namely the weak sequential convergence, the trimming property remains necessary for the approximation in terms of bounded maps. The argument involves the construction of a Sobolev map having infinitely many analytical singularities going to infinity.
Nous avons récemment introduit la propriété dite trimming property pour une variété riemanienne complète : il s'agit d'une condition nécessaire et suffisante pour que les applications bornées soient fortement denses dans pour . Nous prouvons dans cette note que, même pour une notion de convergence plus faible, à savoir la convergence séquentielle faible, la trimming property reste nécessaire pour l'approximation en termes de fonctions bornées. La preuve repose sur la construction d'une application de Sobolev qui a une infinité de singularités hors de tout compact.
Accepted:
Published online:
Pierre Bousquet 1; Augusto C. Ponce 2; Jean Van Schaftingen 2
@article{CRMATH_2018__356_3_264_0, author = {Pierre Bousquet and Augusto C. Ponce and Jean Van Schaftingen}, title = {Weak approximation by bounded {Sobolev} maps with values into complete manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {264--271}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.01.017}, language = {en}, }
TY - JOUR AU - Pierre Bousquet AU - Augusto C. Ponce AU - Jean Van Schaftingen TI - Weak approximation by bounded Sobolev maps with values into complete manifolds JO - Comptes Rendus. Mathématique PY - 2018 SP - 264 EP - 271 VL - 356 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2018.01.017 LA - en ID - CRMATH_2018__356_3_264_0 ER -
%0 Journal Article %A Pierre Bousquet %A Augusto C. Ponce %A Jean Van Schaftingen %T Weak approximation by bounded Sobolev maps with values into complete manifolds %J Comptes Rendus. Mathématique %D 2018 %P 264-271 %V 356 %N 3 %I Elsevier %R 10.1016/j.crma.2018.01.017 %G en %F CRMATH_2018__356_3_264_0
Pierre Bousquet; Augusto C. Ponce; Jean Van Schaftingen. Weak approximation by bounded Sobolev maps with values into complete manifolds. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 264-271. doi : 10.1016/j.crma.2018.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.017/
[1] A characterization of maps in which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 167 (1990), pp. 269-286
[2] The approximation problem for Sobolev maps between two manifolds, Acta Math., Volume 167 (1991), pp. 153-206
[3] A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces (available at) | arXiv
[4] Strong density for higher order Sobolev spaces into compact manifolds, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 763-817
[5] Density of bounded maps in Sobolev spaces into complete manifolds, Ann. Mat. Pura Appl. (4), Volume 196 (2017), pp. 2261-2301
[6] Large solutions for harmonic maps in two dimensions, Commun. Math. Phys., Volume 92 (1983), pp. 203-215
[7] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986), pp. 649-705
[8] Topology and Sobolev spaces, J. Funct. Anal., Volume 183 (2001), pp. 321-369
[9] Approximation of Sobolev mappings, Nonlinear Anal., Volume 22 (1994), pp. 1579-1591
[10] Lipschitz homotopy and density of Lipschitz mappings in Sobolev spaces, Ann. Acad. Sci. Fenn., Math., Volume 39 (2014), pp. 593-604
[11] Density problems for , Commun. Pure Appl. Math., Volume 55 (2002), pp. 937-947
[12] Topology of Sobolev mappings. II, Acta Math., Volume 191 (2003), pp. 55-107
[13] Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal., Volume 13 (2003), pp. 223-257
[14] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983), pp. 253-268
[15] Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math., Volume 160 (1988), pp. 1-17
[16] Weakly Differentiable Functions, Graduate Texts in Mathematics, Springer, New York, 1989
Cited by Sources:
Comments - Policy