In this article, we prove several different improved versions of the classical Bohr's inequality. All the results are proved to be sharp.
Nous montrons ici plusieurs améliorations de l'inégalité de Bohr classique. Nous montrons également que les constantes numériques dans nos résultats sont optimales.
Accepted:
Published online:
Ilgiz R. Kayumov 1; Saminathan Ponnusamy 2
@article{CRMATH_2018__356_3_272_0, author = {Ilgiz R. Kayumov and Saminathan Ponnusamy}, title = {Improved version of {Bohr's} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {272--277}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.01.010}, language = {en}, }
Ilgiz R. Kayumov; Saminathan Ponnusamy. Improved version of Bohr's inequality. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 272-277. doi : 10.1016/j.crma.2018.01.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.010/
[1] On the Bohr inequality (N.K. Govil et al., eds.), Progress in Approximation Theory and Applicable Complex Analysis, Springer Optimization and Its Applications, vol. 117, 2016, pp. 265-295
[2] Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory, Volume 4 (2004) no. 1, pp. 1-19
[3] A theorem concerning power series, Proc. Lond. Math. Soc., Volume 13 (1914) no. 2, pp. 1-5
[4] Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital., Volume 17 (1962), pp. 276-282
[5] A remark on Bohr's inequality, Int. Math. Res. Not. IMRN, Volume 80 (2004), pp. 4307-4330
[6] A remark on Bohr's theorem and its generalizations, J. Anal., Volume 8 (2000), pp. 65-77
[7] Univalent Functions, Springer, New York, 1983
[8] On subordinate univalent functions, Tr. Mat. Inst. Steklova, Volume 38 (1951), pp. 68-71 (in Russian)
[9] Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory, Volume 17 (2017), pp. 679-688
[10] Bohr's phenomenon on a regular condenser in the complex plane, Comput. Methods Funct. Theory, Volume 12 (2012) no. 1, pp. 31-43
[11] On Bohr's inequality, Proc. Lond. Math. Soc., Volume 85 (2002) no. 2, pp. 493-512
Cited by Sources:
Comments - Policy