[Une connexion intégrable sur l'espace de configuration d'une surface de Riemann de genre positif]
Soit X une surface de Riemann de genre positif. Nous notons
Let X be a Riemann surface of positive genus. Denote by
Accepté le :
Publié le :
Payman Eskandari 1
@article{CRMATH_2018__356_3_312_0, author = {Payman Eskandari}, title = {An integrable connection on the configuration space of a {Riemann} surface of positive genus}, journal = {Comptes Rendus. Math\'ematique}, pages = {312--315}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.02.003}, language = {en}, }
Payman Eskandari. An integrable connection on the configuration space of a Riemann surface of positive genus. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 312-315. doi : 10.1016/j.crma.2018.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.003/
[1] On presentations of surface braid groups, J. Algebra, Volume 274 (2004), pp. 543-563
[2] Lower central series for Artin Tits and surface braid groups, J. Algebra, Volume 319 (2008), pp. 1409-1427
[3] Koszul DG-algebras arising from configuration spaces, Geom. Funct. Anal., Volume 4 (1994) no. 2, pp. 119-135
[4] Lie Groups and Lie Algebras, Chapters 1–3, Springer, 1988
[5] Théorie de Hodge, II, Publ. Math. Inst. Hautes Études Sci., Volume 40 (1971), pp. 5-57
[6] Flat connections on configuration spaces and braid groups of surfaces, Adv. Math., Volume 252 (2014), pp. 204-226
[7] Configuration spaces of algebraic varieties, Topology, Volume 35 (1996) no. 4, pp. 1057-1067
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier