We consider the free boundary compressible and incompressible Euler equations with surface tension. In both cases, we provide a priori estimates for the local existence with the initial velocity in , with the condition on the density in the compressible case. An additional condition is required on the free boundary. Compared to the existing literature, both results lower the regularity of initial data for the Lagrangian Euler equation with surface tension.
Nous considérons les équations d'Euler compressibles et incompressibles avec frontière libre et tension de surface. Dans les deux cas, nous fournissons des estimations a priori pour l'existence de solutions locales avec vitesse initiale dans et la condition sur la densité dans le cas compressible. Une condition supplémentaire est nécessaire sur la frontière libre. Par comparaison avec la littérature, les deux résultats abaissent la régularité des données initiales pour les équations d'Euler en coordonnées lagrangiennes, avec tension de surface.
Accepted:
Published online:
Marcelo M. Disconzi 1; Igor Kukavica 2
@article{CRMATH_2018__356_3_306_0, author = {Marcelo M. Disconzi and Igor Kukavica}, title = {On the local existence for the {Euler} equations with free boundary for compressible and incompressible fluids}, journal = {Comptes Rendus. Math\'ematique}, pages = {306--311}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.02.002}, language = {en}, }
TY - JOUR AU - Marcelo M. Disconzi AU - Igor Kukavica TI - On the local existence for the Euler equations with free boundary for compressible and incompressible fluids JO - Comptes Rendus. Mathématique PY - 2018 SP - 306 EP - 311 VL - 356 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2018.02.002 LA - en ID - CRMATH_2018__356_3_306_0 ER -
%0 Journal Article %A Marcelo M. Disconzi %A Igor Kukavica %T On the local existence for the Euler equations with free boundary for compressible and incompressible fluids %J Comptes Rendus. Mathématique %D 2018 %P 306-311 %V 356 %N 3 %I Elsevier %R 10.1016/j.crma.2018.02.002 %G en %F CRMATH_2018__356_3_306_0
Marcelo M. Disconzi; Igor Kukavica. On the local existence for the Euler equations with free boundary for compressible and incompressible fluids. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 306-311. doi : 10.1016/j.crma.2018.02.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.002/
[1] Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit, SIAM J. Math. Anal., Volume 45 (2013) no. 6, pp. 3690-3767
[2] Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Volume 20 (2007) no. 3, pp. 829-930
[3] The free boundary Euler equations with large surface tension, J. Differ. Equ., Volume 261 (2016) no. 2, pp. 821-889
[4] M. Disconzi, I. Kukavica, A priori estimates for the free-boundary Euler equations with surface tension in three dimensions, preprint, 2017.
[5] M. Disconzi, I. Kukavica, A priori estimates for the 3d compressible free-boundary Euler equations with surface tension in the case of a liquid, preprint, 2017.
[6] On the local existence of the free-surface Euler equation with surface tension, Asymptot. Anal., Volume 100 (2016), pp. 63-86
[7] On the local existence for the 3d Euler equation with a free interface, Appl. Math. Optim., Volume 76 (2017) no. 3, pp. 535-563 | DOI
[8] On the three-dimensional Euler equations with a free boundary subject to surface tension, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 6, pp. 753-781
[9] Geometry and a priori estimates for free boundary problems of the Euler equation, Commun. Pure Appl. Math., Volume 61 (2008) no. 5, pp. 698-744
[10] Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 2, pp. 653-705
Cited by Sources:
Comments - Policy