In [6], it was asked whether all flat holomorphic Cartan geometries on a complex torus are translation invariant. We answer this affirmatively under the assumption that the complex Lie group G is affine. More precisely, we show that every holomorphic Cartan geometry of type , with G a complex affine Lie group, on any complex torus is translation invariant.
Nous démontrons que, sur les tores complexes, toutes les géométries de Cartan holomorphes modelées sur , avec G groupe de Lie complexe affine, sont invariantes par translation.
Accepted:
Published online:
Indranil Biswas 1; Sorin Dumitrescu 2
@article{CRMATH_2018__356_3_316_0, author = {Indranil Biswas and Sorin Dumitrescu}, title = {Holomorphic {Cartan} geometries on complex tori}, journal = {Comptes Rendus. Math\'ematique}, pages = {316--321}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.02.005}, language = {en}, }
Indranil Biswas; Sorin Dumitrescu. Holomorphic Cartan geometries on complex tori. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 316-321. doi : 10.1016/j.crma.2018.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.005/
[1] Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207
[2] Connections and Higgs fields on a principal bundle, Ann. Glob. Anal. Geom., Volume 33 (2008), pp. 19-46
[3] Holomorphic Cartan geometries and Calabi–Yau manifolds, J. Geom. Phys., Volume 60 (2010), pp. 661-663
[4] Structures géométriques holomorphes sur les variétés complexes compactes, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001), pp. 557-571
[5] Killing fields of holomorphic Cartan geometries, Monatshefte Math., Volume 161 (2010), pp. 301-316
[6] Symmetries of holomorphic geometric structures on complex tori, Complex Manifolds, Volume 3 (2016), pp. 1-15
[7] Feuilletages holomorphes de codimension un sur les espaces homogènes complexes, Ann. Fac. Sci. Toulouse, Volume 5 (1996), pp. 493-519
[8] Rigid transformation groups (D. Bernard; Y. Choquet-Bruhat, eds.), Géométrie différentielle, Travaux en cours, vol. 33, Hermann, Paris, 1988, pp. 65-141
[9] Holomorphic affine connections on compact complex surfaces, J. Fac. Sci., Univ. Tokyo, Volume 27 (1980), pp. 247-264
[10] Holomorphic parabolic geometries and Calabi–Yau manifolds, SIGMA, Volume 7 (2011)
[11] Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci., Volume 75 (1992), pp. 5-95
Cited by Sources:
Comments - Policy