A slice of finite groups is a pair consisting of a finite group G and a subgroup S of G. In this paper, we show that some properties of finite groups extend to slices of finite groups. In particular, by analogy with B-groups, we introduce the notion of -slice, and show that any slice of finite groups admits a largest quotient -slice.
Une tranche de groupes finis est un couple formé d'un groupe fini G et d'un sous-groupe S de G. Dans cet article, nous démontrons que certaines propriétés des groupes finis s'étendent aux tranches de groupes finis. En particulier, par analogie avec les B-groupes, nous introduisons la notion de -tranche, et nous montrons que toute tranche de groupes finis admet un plus grand quotient qui soit une -tranche.
Accepted:
Published online:
Ibrahima Tounkara 1
@article{CRMATH_2018__356_4_360_0, author = {Ibrahima Tounkara}, title = {On the {\protect\emph{T}\protect\textsuperscript{\ensuremath{\circ}}-slices} of a finite group}, journal = {Comptes Rendus. Math\'ematique}, pages = {360--364}, publisher = {Elsevier}, volume = {356}, number = {4}, year = {2018}, doi = {10.1016/j.crma.2018.03.001}, language = {en}, }
Ibrahima Tounkara. On the T∘-slices of a finite group. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 360-364. doi : 10.1016/j.crma.2018.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.03.001/
[1] The composition factors of the functor of permutation modules, J. Algebra, Volume 344 (2011), pp. 284-295
[2] Foncteurs d'ensembles munis d'une double action, J. Algebra, Volume 183 (2008) no. 0238, pp. 5067-5087
[3] The slice Burnside ring and the section Burnside ring of a finite group, Compos. Math., Volume 148 (2012) no. 1, pp. 868-906
[4] A conjecture on B-groups, Math. Z., Volume 274 (2013), pp. 367-372
[5] The Möbius function of a lattice, J. Comb. Theory, Volume 1 (1966), pp. 126-131
[6] Idempotent formula for the Burnside ring with applications to the p-subgroup simplicial complex, Ill. J. Math., Volume 25 (1981), pp. 63-67
[7] The ideals of the slice Burnside p-biset functor, J. Algebra, Volume 495 (2018), pp. 81-113
[8] Idempotents in Burnside rings and Dress induction theorem, J. Algebra, Volume 80 (1983), pp. 90-105
Cited by Sources:
☆ This work is part of my doctoral thesis under Oumar Diankha (UCAD, Dakar, Senegal) and Serge Bouc (UPJV, Amiens, France).
Comments - Policy