We prove the consistency of ♣ with the negation of Galvin's property. On the other hand, we show that superclub implies Galvin's property. We also prove the consistency of with for a supercompact cardinal κ.
Nous démontrons que le principe trèfle ♣ et la négation de la propriété de Galvin sont consistants. D'un autre côté, nous montrons que supertrèfle implique la propriété de Galvin. Nous montrons également que et sont consistants pour un cardinal supercompact κ.
Accepted:
Published online:
Shimon Garti 1
@article{CRMATH_2018__356_4_351_0, author = {Shimon Garti}, title = {Tiltan}, journal = {Comptes Rendus. Math\'ematique}, pages = {351--359}, publisher = {Elsevier}, volume = {356}, number = {4}, year = {2018}, doi = {10.1016/j.crma.2018.02.001}, language = {en}, }
Shimon Garti. Tiltan. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 351-359. doi : 10.1016/j.crma.2018.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.001/
[1] On the intersection of closed unbounded sets, J. Symb. Log., Volume 51 (1986) no. 1, pp. 180-189 MR 830084 (87e:03117)
[2] Weak saturation properties of ideals, Infinite and Finite Sets (Colloq., Keszthely, 1973; Dedicated to P. Erdős on His 60th Birthday), vol. I, Colloq. Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam, 1975, pp. 137-158 MR 0369081 (51 #5317)
[3] Cardinal invariants of the continuum and combinatorics on uncountable cardinals, Ann. Pure Appl. Logic, Volume 144 (2006) no. 1–3, pp. 43-72 (MR 2279653)
[4] Variations of the stick principle, Eur. J. Math., Volume 3 (2017) no. 3, pp. 650-658 (MR 3687435)
[5] Weak diamond and Galvin's property, Period. Math. Hung., Volume 74 (2017) no. 1, pp. 128-136 (MR 3604115)
[6] Partition calculus and cardinal invariants, J. Math. Soc. Jpn., Volume 66 (2014) no. 2, pp. 425-434 (MR 3201820)
[7] Open and solved problems concerning polarized partition relations, Fundam. Math., Volume 234 (2016) no. 1, pp. 1-14 (MR 3509813)
[8] Random reals and polarized colorings, Studia Sci. Math. Hung. (2018) (to appear)
[9] The fine structure of the constructible hierarchy, Ann. Math. Log., Volume 4 (1972), pp. 229-308 Erratum: The fine structure of the constructible hierarchy Ann. Math. Log., 4, 1972, pp. 443 With a section by Jack Silver, MR 0309729 (46 #8834)
[10] Making the supercompactness of κ indestructible under κ-directed closed forcing, Isr. J. Math., Volume 29 (1978) no. 4, pp. 385-388 (MR 0472529)
[11] On countably compact, perfectly normal spaces, J. Lond. Math. Soc. (2), Volume 14 (1976) no. 3, pp. 505-516 (MR 0438292)
[12] Guessing Axioms, Invariance and Suslin Trees, University of East Anglia, 2011 (Ph.D. Thesis)
[13] Two inequalities between cardinal invariants, Fundam. Math., Volume 237 (2017) no. 2, pp. 187-200 (MR 3615051)
[14] Proper and Improper Forcing, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998 MR 1623206 (98m:03002)
[15] Diamonds, Proc. Amer. Math. Soc., Volume 138 (2010) no. 6, pp. 2151-2161 (MR 2596054)
Cited by Sources:
Comments - Policy