As a consequence of integral bounds for three classes of quaternionic spherical harmonics, we prove some bounds from below for the norm of quaternionic harmonic projectors, for .
En conséquence d'estimations intégrales pour trois classes d'harmoniques sphériques quaternioniques, nous prouvons quelques minorations pour la norme des projecteurs harmoniques quaternioniques, pour .
Accepted:
Published online:
Roberto Bramati 1; Valentina Casarino 2; Paolo Ciatti 3
@article{CRMATH_2018__356_5_482_0, author = {Roberto Bramati and Valentina Casarino and Paolo Ciatti}, title = {On the norms of quaternionic harmonic projection operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {482--488}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.03.011}, language = {en}, }
TY - JOUR AU - Roberto Bramati AU - Valentina Casarino AU - Paolo Ciatti TI - On the norms of quaternionic harmonic projection operators JO - Comptes Rendus. Mathématique PY - 2018 SP - 482 EP - 488 VL - 356 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2018.03.011 LA - en ID - CRMATH_2018__356_5_482_0 ER -
Roberto Bramati; Valentina Casarino; Paolo Ciatti. On the norms of quaternionic harmonic projection operators. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 482-488. doi : 10.1016/j.crma.2018.03.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.03.011/
[1] A Mehler–Heine formula for disk polynomials, Indag. Math., Volume 2 (1991), pp. 9-18
[2] The Schrödinger equation on a compact manifold: Strichartz estimates and applications, Journées “Équations aux dérivées partielles”, Exp. No. V, University of Nantes, France, 2001
[3] Strichartz inequalities and the non-linear Schrödinger equation on compact manifold, Amer. J. Math., Volume 126 (2004), pp. 569-605
[4] Two-parameter estimates for joint spectral projections on complex spheres, Math. Z., Volume 261 (2009), pp. 245-259
[5] Transferring eigenfunction bounds from to , Stud. Math., Volume 194 (2009), pp. 23-42
[6] joint eigenfunction bounds on quaternionic spheres, J. Fourier Anal. Appl., Volume 23 (2017), pp. 886-918
[7] Strichartz estimates and the nonlinear Schrödinger equation for the sublaplacian on complex spheres, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 2631-2664
[8] Harmonic functions on classical rank one balls, Boll. Unione Mat. Ital., Volume 8 (2001), pp. 685-702
[9] Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 137-173
[10] On the existence and the irreducibility of certain series of representations, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 627-642
[11] Oscillatory integrals and spherical harmonics, Duke Math. J., Volume 53 (1986), pp. 43-65
[12] Fourier Integrals in Classical Analysis, Camb. Tracts Math., vol. 105, Cambridge University Press, Cambridge, UK, 1993
[13] Orthogonal Polynomials, Colloq. Publ. – Amer. Math. Soc., vol. 23, American Mathematical Society, Providence, RI, USA, 1974
Cited by Sources:
Comments - Policy