In this paper, we study the following fractional Kirchhoff equations
Dans ce texte, nous étudions les équations de Kirchhoff fractionnaires suivantes :
Accepted:
Published online:
Liuyang Shao 1; Haibo Chen 1
@article{CRMATH_2018__356_5_489_0, author = {Liuyang Shao and Haibo Chen}, title = {Existence and concentration result for a class of fractional {Kirchhoff} equations with {Hartree-type} nonlinearities and steep potential well}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--497}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.03.008}, language = {en}, }
TY - JOUR AU - Liuyang Shao AU - Haibo Chen TI - Existence and concentration result for a class of fractional Kirchhoff equations with Hartree-type nonlinearities and steep potential well JO - Comptes Rendus. Mathématique PY - 2018 SP - 489 EP - 497 VL - 356 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2018.03.008 LA - en ID - CRMATH_2018__356_5_489_0 ER -
%0 Journal Article %A Liuyang Shao %A Haibo Chen %T Existence and concentration result for a class of fractional Kirchhoff equations with Hartree-type nonlinearities and steep potential well %J Comptes Rendus. Mathématique %D 2018 %P 489-497 %V 356 %N 5 %I Elsevier %R 10.1016/j.crma.2018.03.008 %G en %F CRMATH_2018__356_5_489_0
Liuyang Shao; Haibo Chen. Existence and concentration result for a class of fractional Kirchhoff equations with Hartree-type nonlinearities and steep potential well. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 489-497. doi : 10.1016/j.crma.2018.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.03.008/
[1] Mechanik, Teubener, Leipzig, 1983
[2] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983), pp. 313-345
[3] On some questions in boundary value problems of mathematical physics, Rio de Janeiro, 1977 (North-Holland Mathematics Studies), Volume vol. 30 (1978), pp. 284-346
[4] A remark on least energy solutions in , Proc. Amer. Math. Soc., Volume 131 (2003), pp. 2399-2408
[5] Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, Volume 26 (2013), pp. 479-494
[6] The concentration compactness principle in the calculus of variations: the locally compact case. Part 1, 2, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984), pp. 109-145
[7] Analysis, Grad. Stud. Math., vol. 14, American Mathematical Society, 2001
[8] A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal., Volume 99 (2014), pp. 35-48
[9] Existence and multiplicity results for some superlinear elliptic problems on , Commun. Partial Differ. Equ., Volume 20 (1995), pp. 1725-1741
[10] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012), pp. 521-573
[11] Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., Volume 195 (2010), pp. 455-467
[12] Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., Volume 448 (2017), pp. 60-80
Cited by Sources:
☆ This work is partially supported by Natural Science Foundation of China 11671403, by the Fundamental Research Funds for the Central Universities of Central South University 2017zzts056.
Comments - Policy