Differential geometry
Hamilton–Souplet–Zhang's gradient estimates and Liouville theorems for a nonlinear parabolic equation
Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 550-557.

In this paper, we study Hamilton–Souplet–Zhang's gradient estimates for positive solutions to the nonlinear parabolic equation

 $ut=Δu+λuα$
on noncompact Riemannian manifolds, where $λ,α$ are two real constants. As an application, we obtain a Liouville-type theorem.

Dans la présente Note, nous étudions les estimations du gradient de Hamilton–Souplet–Zhang pour les solutions positives de l'équation non linéaire parabolique

 $ut=Δu+λuα$
sur une variété riemannienne non compacte, où λ et α sont deux constantes réelles. Nous en déduisons, comme application, un théorème de type Liouville.

Accepted:
Published online:
DOI: 10.1016/j.crma.2018.04.003

Bingqing Ma 1, 2; Fanqi Zeng 3

1 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, People's Republic of China
2 Department of Mathematics, Henan Normal University, Xinxiang 453007, People's Republic of China
3 School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, People's Republic of China
@article{CRMATH_2018__356_5_550_0,
author = {Bingqing Ma and Fanqi Zeng},
title = {Hamilton{\textendash}Souplet{\textendash}Zhang's gradient estimates and {Liouville} theorems for a nonlinear parabolic equation},
journal = {Comptes Rendus. Math\'ematique},
pages = {550--557},
publisher = {Elsevier},
volume = {356},
number = {5},
year = {2018},
doi = {10.1016/j.crma.2018.04.003},
language = {en},
}
TY  - JOUR
AU  - Bingqing Ma
AU  - Fanqi Zeng
TI  - Hamilton–Souplet–Zhang's gradient estimates and Liouville theorems for a nonlinear parabolic equation
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 550
EP  - 557
VL  - 356
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2018.04.003
LA  - en
ID  - CRMATH_2018__356_5_550_0
ER  - 
%0 Journal Article
%A Bingqing Ma
%A Fanqi Zeng
%T Hamilton–Souplet–Zhang's gradient estimates and Liouville theorems for a nonlinear parabolic equation
%J Comptes Rendus. Mathématique
%D 2018
%P 550-557
%V 356
%N 5
%I Elsevier
%R 10.1016/j.crma.2018.04.003
%G en
%F CRMATH_2018__356_5_550_0
Bingqing Ma; Fanqi Zeng. Hamilton–Souplet–Zhang's gradient estimates and Liouville theorems for a nonlinear parabolic equation. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 550-557. doi : 10.1016/j.crma.2018.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.003/

[1] S.-Y. Cheng; S.-T. Yau Differential equations on Riemannian manifolds and their geometric applications, Commun. Pure Appl. Math., Volume 28 (1975), pp. 333-354

[2] E.B. Davies Heat Kernels and Spectral Theory, Cambridge Tracts in Math., vol. 92, Cambridge University Press, UK, 1989

[3] R. Hamilton A matrix Harnack estimate for the heat equation, Commun. Anal. Geom., Volume 1 (1993), pp. 113-125

[4] G.Y. Huang; Z.J. Huang; H. Li Gradient estimates for the porous medium equations on Riemannian manifolds, J. Geom. Anal., Volume 23 (2013), pp. 1851-1875

[5] G.Y. Huang; Z.J. Huang; H. Li Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Ann. Glob. Anal. Geom., Volume 43 (2013), pp. 209-232

[6] G.Y. Huang; H. Li Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian, Pac. J. Math., Volume 268 (2014), pp. 47-78

[7] P. Li; S.-T. Yau On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201

[8] J. Li Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., Volume 100 (1991), pp. 233-256

[9] J.F. Li; X.J. Xu Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math., Volume 226 (2011), pp. 4456-4491

[10] L. Ma Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal., Volume 241 (2006), pp. 374-382

[11] P. Souplet; Q.S. Zhang Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. Lond. Math. Soc., Volume 38 (2006), pp. 1045-1053

[12] X.J. Xu Gradient estimates for $ut=ΔF(u)$ on manifolds and some Liouville-type theorems, J. Differ. Equ., Volume 252 (2012), pp. 1403-1420

[13] Y.Y. Yang Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 4095-4102

[14] Y.Y. Yang Gradient estimates for the equation $Δu+cu−α=0$ on Riemannian manifolds, Acta Math. Sin. Engl. Ser., Volume 26 (2010), pp. 1177-1182

[15] J. Zhang; B.Q. Ma Gradient estimates for a nonlinear equation $Δfu+cu−α=0$ on complete noncompact manifolds, Commun. Math., Volume 19 (2011), pp. 73-84

[16] X.B. Zhu Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds, Nonlinear Anal., Volume 74 (2011), pp. 5141-5146

Cited by Sources:

The research of the first author was supported by NSFC (Nos. 11401179, 11671121).