In this paper, we study Hamilton–Souplet–Zhang's gradient estimates for positive solutions to the nonlinear parabolic equation
Dans la présente Note, nous étudions les estimations du gradient de Hamilton–Souplet–Zhang pour les solutions positives de l'équation non linéaire parabolique
Accepted:
Published online:
Bingqing Ma 1, 2; Fanqi Zeng 3
@article{CRMATH_2018__356_5_550_0, author = {Bingqing Ma and Fanqi Zeng}, title = {Hamilton{\textendash}Souplet{\textendash}Zhang's gradient estimates and {Liouville} theorems for a nonlinear parabolic equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {550--557}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.04.003}, language = {en}, }
TY - JOUR AU - Bingqing Ma AU - Fanqi Zeng TI - Hamilton–Souplet–Zhang's gradient estimates and Liouville theorems for a nonlinear parabolic equation JO - Comptes Rendus. Mathématique PY - 2018 SP - 550 EP - 557 VL - 356 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2018.04.003 LA - en ID - CRMATH_2018__356_5_550_0 ER -
Bingqing Ma; Fanqi Zeng. Hamilton–Souplet–Zhang's gradient estimates and Liouville theorems for a nonlinear parabolic equation. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 550-557. doi : 10.1016/j.crma.2018.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.003/
[1] Differential equations on Riemannian manifolds and their geometric applications, Commun. Pure Appl. Math., Volume 28 (1975), pp. 333-354
[2] Heat Kernels and Spectral Theory, Cambridge Tracts in Math., vol. 92, Cambridge University Press, UK, 1989
[3] A matrix Harnack estimate for the heat equation, Commun. Anal. Geom., Volume 1 (1993), pp. 113-125
[4] Gradient estimates for the porous medium equations on Riemannian manifolds, J. Geom. Anal., Volume 23 (2013), pp. 1851-1875
[5] Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Ann. Glob. Anal. Geom., Volume 43 (2013), pp. 209-232
[6] Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian, Pac. J. Math., Volume 268 (2014), pp. 47-78
[7] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201
[8] Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., Volume 100 (1991), pp. 233-256
[9] Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math., Volume 226 (2011), pp. 4456-4491
[10] Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal., Volume 241 (2006), pp. 374-382
[11] Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. Lond. Math. Soc., Volume 38 (2006), pp. 1045-1053
[12] Gradient estimates for on manifolds and some Liouville-type theorems, J. Differ. Equ., Volume 252 (2012), pp. 1403-1420
[13] Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 4095-4102
[14] Gradient estimates for the equation on Riemannian manifolds, Acta Math. Sin. Engl. Ser., Volume 26 (2010), pp. 1177-1182
[15] Gradient estimates for a nonlinear equation on complete noncompact manifolds, Commun. Math., Volume 19 (2011), pp. 73-84
[16] Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds, Nonlinear Anal., Volume 74 (2011), pp. 5141-5146
Cited by Sources:
☆ The research of the first author was supported by NSFC (Nos. 11401179, 11671121).
Comments - Policy