Comptes Rendus
Statistics
On estimation in a spatial functional linear regression model with derivatives
Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 558-562.

This paper deals with functional linear regression for spatial data. We study the asymptotic properties of an estimator of a linear model where a spatial scalar response variable is related to a spatial functional explanatory variable and to its derivative. Convergence results with rate of this estimator are derived.

Cet article aborde l'estimation de la régression linéaire fonctionnelle dans un cadre spatial. Nous étudions les propriétés asymptotiques de l'estimateur d'un modèle où une variable réponse réelle est liée à une variable dépendante fonctionnelle et sa dérivée. Nous établissons des résultats de convergence pour cet estimateur, et des vitesses de convergence sont données.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.02.013
Stéphane Bouka 1; Sophie Dabo-Niang 2, 3; Guy Martial Nkiet 1

1 Laboratoire URMI, University of Masuku, Franceville, Gabon
2 Laboratoire LEM, CNRS 9221, University of Lille, France
3 INRIA–MODAL, Lille, France
@article{CRMATH_2018__356_5_558_0,
     author = {St\'ephane Bouka and Sophie Dabo-Niang and Guy Martial Nkiet},
     title = {On estimation in a spatial functional linear regression model with derivatives},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {558--562},
     publisher = {Elsevier},
     volume = {356},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crma.2018.02.013},
     language = {en},
}
TY  - JOUR
AU  - Stéphane Bouka
AU  - Sophie Dabo-Niang
AU  - Guy Martial Nkiet
TI  - On estimation in a spatial functional linear regression model with derivatives
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 558
EP  - 562
VL  - 356
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2018.02.013
LA  - en
ID  - CRMATH_2018__356_5_558_0
ER  - 
%0 Journal Article
%A Stéphane Bouka
%A Sophie Dabo-Niang
%A Guy Martial Nkiet
%T On estimation in a spatial functional linear regression model with derivatives
%J Comptes Rendus. Mathématique
%D 2018
%P 558-562
%V 356
%N 5
%I Elsevier
%R 10.1016/j.crma.2018.02.013
%G en
%F CRMATH_2018__356_5_558_0
Stéphane Bouka; Sophie Dabo-Niang; Guy Martial Nkiet. On estimation in a spatial functional linear regression model with derivatives. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 558-562. doi : 10.1016/j.crma.2018.02.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.013/

[1] F. Comte; J. Johannes Adaptive functional linear regression, Ann. Stat., Volume 40 (2012), pp. 2765-2797

[2] A. Cuevas A partial overview of the theory of statistics with functional data, J. Stat. Plan. Inference, Volume 147 (2014), pp. 1-23

[3] R. Giraldo Cokriging based on curves, prediction and estimation of the prediction variance, InterStat, Volume 2 (2014), pp. 1-30

[4] R. Giraldo; P. Delicado; J. Mateu Ordinary kriging for function-valued spatial data, Environ. Ecol. Stat., Volume 18 (2011) no. 3, pp. 411-426

[5] X. Guyon Random Fields on a Network: Modeling, Statistics and Applications, Springer, New York, 1995

[6] T. Hastie; C. Mallows A statistical view of some chemometrics regression tools: discussion, Technometrics, Volume 35 (1993), pp. 140-143

[7] L. Horvath; P. Kokoszka Inference for Functional Data with Applications, Springer, 2012

[8] B. Liu; L. Wang; J. Cao Estimating functional linear mixed-effects regression models, Comput. Stat. Data Anal., Volume 106 (2017), pp. 153-164

[9] A. Mas; B. Pumo Functional linear regression with derivatives, J. Nonparametr. Stat., Volume 21 (2009), pp. 19-40

[10] D. Nerini; P. Monestiez; C. Manté Cokriging for spatial functional data, J. Multivar. Anal., Volume 101 (2010) no. 2, pp. 409-418

[11] L.T. Tran Kernel density estimation on random fields, J. Multivar. Anal., Volume 34 (1990), pp. 37-53

Cited by Sources:

Comments - Policy