We consider the nonlinear Schrödinger equations (NLS) on with random and rough initial data. By working in the framework of spaces, , we prove almost sure local well-posedness for rougher initial data than those considered in the existing literature. The main ingredient of the proof is the dispersive estimate.
Dans cet article, nous considérons l'équation de Schrödinger non linéaire (NLS) sur à données initiales aléatoires et surcritiques. En travaillant dans des espaces de , , nous améliorons les résultats précédents de la littérature, en ce sens que nous prouvons que l'équation NLS est localement bien posée presque sûrement pour des données initiales à régularité plus basse. L'ingrédient principal de la preuve est l'estimation dispersive.
Accepted:
Published online:
Oana Pocovnicu 1; Yuzhao Wang 2, 3
@article{CRMATH_2018__356_6_637_0, author = {Oana Pocovnicu and Yuzhao Wang}, title = {An {\protect\emph{L}\protect\textsuperscript{\protect\emph{p}}-theory} for almost sure local well-posedness of the nonlinear {Schr\"odinger} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {637--643}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.04.009}, language = {en}, }
TY - JOUR AU - Oana Pocovnicu AU - Yuzhao Wang TI - An Lp-theory for almost sure local well-posedness of the nonlinear Schrödinger equations JO - Comptes Rendus. Mathématique PY - 2018 SP - 637 EP - 643 VL - 356 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2018.04.009 LA - en ID - CRMATH_2018__356_6_637_0 ER -
Oana Pocovnicu; Yuzhao Wang. An Lp-theory for almost sure local well-posedness of the nonlinear Schrödinger equations. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 637-643. doi : 10.1016/j.crma.2018.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.009/
[1] Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in Harmonic Analysis, vol. 4, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2015, pp. 3-25
[2] On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on , , Trans. Amer. Math. Soc. Ser. B, Volume 2 (2015), pp. 1-50
[3] Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on | arXiv
[4] Almost sure local well-posedness for the supercritical quintic NLS | arXiv
[5] Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475
[6] Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 1-30
[7] Some remarks on the nonlinear Schrödinger equation in the critical case, Washington, DC, 1987 (Lect. Notes Math.), Volume vol. 1394, Springer, Berlin (1989), pp. 18-29
[8] Ill-posedness for nonlinear Schrödinger and wave equations | arXiv
[9] Smoothing properties and retarded estimates for some dispersive evolution equations, Commun. Math. Phys., Volume 144 (1992) no. 1, pp. 163-188
[10] The Kato–Ponce inequality, Commun. Partial Differ. Equ., Volume 39 (2014) no. 6, pp. 1128-1157
[11] Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 12, pp. 6943-6974
[12] Random data Cauchy theory for nonlinear wave equations of power-type on , Commun. Partial Differ. Equ., Volume 39 (2014) no. 12, pp. 2262-2283
[13] A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkc. Ekvacioj, Volume 60 (2017), pp. 259-277
[14] T. Oh, O. Pocovnicu, Y. Wang, On the stochastic nonlinear Schrödinger equations with non-smooth additive noise, preprint.
[15] On the probabilistic well-posedness of the nonlinear Schrödinger equation with non-algebraic nonlinearities | arXiv
[16] Probabilistic global well-posedness of the energy-critical defocusing cubic nonlinear wave equations on , J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2321-2375
[17] -solutions for nonlinear Schrödinger equations and nonlinear groups, Funkc. Ekvacioj, Volume 30 (1987) no. 1, pp. 115-125
[18] The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., Volume 138 (2007) no. 2, pp. 281-374
[19] Random data Cauchy theory for the generalized incompressible Navier–Stokes equations, J. Math. Fluid Mech., Volume 14 (2012) no. 2, pp. 311-324
[20] Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space for , Trans. Amer. Math. Soc., Volume 362 (2010) no. 9, pp. 4683-4694
Cited by Sources:
Comments - Policy