Comptes Rendus
Partial differential equations
On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains
Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 644-647.

We consider the non-local Fisher–KPP equation on a bounded domain with Neumann boundary conditions. Thanks to a Lyapunov function, we prove that, under a general hypothesis on the kernel involved in the non-local term, the homogenous steady state 1 is globally asymptotically stable. This assumption happens to be linked to some conditions given in the literature, which ensure that travelling waves link 0 to 1.

Nous considérons l'équation de Fisher–KPP non locale en domaine borné, avec conditions de Neumann au bord. À l'aide d'une fonction de Lyapunov, nous montrons que, sous une hypothèse générale sur le noyau présent dans le terme non local, l'état stationnaire 1 est globalement asymptotiquement stable. Cette hypothèse se trouve être reliée à certaines conditions données dans la littérature, qui assurent que les fronts de propagation relient 0 et 1.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.04.016

Camille Pouchol 1, 2

1 Sorbonne Université, UPMC Université Paris-6, CNRS UMR 7598, Laboratoire Jacques-Louis-Lions, 75005 Paris, France
2 INRIA Team Mamba, INRIA Paris, 2, rue Simone- Iff, CS 42112, 75589 Paris, France
@article{CRMATH_2018__356_6_644_0,
     author = {Camille Pouchol},
     title = {On the stability of the state 1 in the non-local {Fisher{\textendash}KPP} equation in bounded domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {644--647},
     publisher = {Elsevier},
     volume = {356},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crma.2018.04.016},
     language = {en},
}
TY  - JOUR
AU  - Camille Pouchol
TI  - On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 644
EP  - 647
VL  - 356
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2018.04.016
LA  - en
ID  - CRMATH_2018__356_6_644_0
ER  - 
%0 Journal Article
%A Camille Pouchol
%T On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains
%J Comptes Rendus. Mathématique
%D 2018
%P 644-647
%V 356
%N 6
%I Elsevier
%R 10.1016/j.crma.2018.04.016
%G en
%F CRMATH_2018__356_6_644_0
Camille Pouchol. On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 644-647. doi : 10.1016/j.crma.2018.04.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.016/

[1] M. Alfaro; J. Coville Rapid traveling waves in the nonlocal Fisher equation connect two unstable states, Appl. Math. Lett., Volume 25 (2012) no. 12, pp. 2095-2099

[2] H. Berestycki; G. Nadin; B. Perthame; L. Ryzhik The non-local Fisher–KPP equation: travelling waves and steady states, Nonlinearity, Volume 22 (2009) no. 12, p. 2813

[3] J. Coville Convergence to equilibrium for positive solutions of some mutation–selection model, 2013 (Preprint) | arXiv

[4] B.S. Goh Global stability in many-species systems, Am. Nat., Volume 111 (1977), pp. 135-143

[5] F. Hamel; L. Ryzhik On the nonlocal Fisher–KPP equation: steady states, spreading speed and global bounds, Nonlinearity, Volume 27 (2014) no. 11, p. 2735

[6] P.-E. Jabin; G. Raoul On selection dynamics for competitive interactions, J. Math. Biol., Volume 63 (2011) no. 3, pp. 493-517

[7] A.N. Kolmogorov; I.G. Petrovsky; N. Piskunov Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou Sér. Int. A, Volume 1 (1937), pp. 1-26

[8] G. Nadin; B. Perthame; M. Tang Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 9–10, pp. 553-557

[9] B. Perthame Parabolic Equations in Biology, Springer, 2015

[10] C. Pouchol; J. Clairambault; A. Lorz; E. Trélat Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, J. Math. Pures Appl. (9) (2018) | DOI

[11] C. Pouchol; E. Trélat Global stability with selection in integro-differential Lotka–Volterra systems modelling trait-structured populations, 2017 (Preprint) | arXiv

[12] M. Reed; B. Simon Methods of Modern Mathematical Physics, vol. II, Academic Press, 1975

Cited by Sources:

Comments - Policy