We consider the non-local Fisher–KPP equation on a bounded domain with Neumann boundary conditions. Thanks to a Lyapunov function, we prove that, under a general hypothesis on the kernel involved in the non-local term, the homogenous steady state 1 is globally asymptotically stable. This assumption happens to be linked to some conditions given in the literature, which ensure that travelling waves link 0 to 1.
Nous considérons l'équation de Fisher–KPP non locale en domaine borné, avec conditions de Neumann au bord. À l'aide d'une fonction de Lyapunov, nous montrons que, sous une hypothèse générale sur le noyau présent dans le terme non local, l'état stationnaire 1 est globalement asymptotiquement stable. Cette hypothèse se trouve être reliée à certaines conditions données dans la littérature, qui assurent que les fronts de propagation relient 0 et 1.
Accepted:
Published online:
Camille Pouchol 1, 2
@article{CRMATH_2018__356_6_644_0, author = {Camille Pouchol}, title = {On the stability of the state 1 in the non-local {Fisher{\textendash}KPP} equation in bounded domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {644--647}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.04.016}, language = {en}, }
Camille Pouchol. On the stability of the state 1 in the non-local Fisher–KPP equation in bounded domains. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 644-647. doi : 10.1016/j.crma.2018.04.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.016/
[1] Rapid traveling waves in the nonlocal Fisher equation connect two unstable states, Appl. Math. Lett., Volume 25 (2012) no. 12, pp. 2095-2099
[2] The non-local Fisher–KPP equation: travelling waves and steady states, Nonlinearity, Volume 22 (2009) no. 12, p. 2813
[3] Convergence to equilibrium for positive solutions of some mutation–selection model, 2013 (Preprint) | arXiv
[4] Global stability in many-species systems, Am. Nat., Volume 111 (1977), pp. 135-143
[5] On the nonlocal Fisher–KPP equation: steady states, spreading speed and global bounds, Nonlinearity, Volume 27 (2014) no. 11, p. 2735
[6] On selection dynamics for competitive interactions, J. Math. Biol., Volume 63 (2011) no. 3, pp. 493-517
[7] Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou Sér. Int. A, Volume 1 (1937), pp. 1-26
[8] Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 9–10, pp. 553-557
[9] Parabolic Equations in Biology, Springer, 2015
[10] Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, J. Math. Pures Appl. (9) (2018) | DOI
[11] Global stability with selection in integro-differential Lotka–Volterra systems modelling trait-structured populations, 2017 (Preprint) | arXiv
[12] Methods of Modern Mathematical Physics, vol. II, Academic Press, 1975
Cited by Sources:
Comments - Policy