In this note, we are interested in entire solutions to the semilinear biharmonic equation
Dans cette note, on s'intéresse aux solutions radiales entières de l'équation semilinéaire biharmonique
Accepted:
Published online:
Xia Huang 1; Dong Ye 2; Feng Zhou 1
@article{CRMATH_2018__356_6_632_0, author = {Xia Huang and Dong Ye and Feng Zhou}, title = {Stability for entire radial solutions to the biharmonic equation with negative exponents}, journal = {Comptes Rendus. Math\'ematique}, pages = {632--636}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.05.001}, language = {en}, }
TY - JOUR AU - Xia Huang AU - Dong Ye AU - Feng Zhou TI - Stability for entire radial solutions to the biharmonic equation with negative exponents JO - Comptes Rendus. Mathématique PY - 2018 SP - 632 EP - 636 VL - 356 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2018.05.001 LA - en ID - CRMATH_2018__356_6_632_0 ER -
Xia Huang; Dong Ye; Feng Zhou. Stability for entire radial solutions to the biharmonic equation with negative exponents. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 632-636. doi : 10.1016/j.crma.2018.05.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.001/
[1] Rellich inequalities with weights, Calc. Var. Partial Differ. Equ., Volume 45 (2012) no. 1–2, pp. 147-164
[2] Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math. Ann., Volume 348 (2010) no. 1, pp. 143-193
[3] A note on nonlinear biharmonic equations with negative exponents, J. Differ. Equ., Volume 253 (2012) no. 11, pp. 3147-3157
[4] Radial entire solutions of even order semilinear elliptic equations, Can. J. Math., Volume 40 (1988), pp. 1281-1300
[5] The regularity and stability of solutions to semilinear fourth-order elliptic problems with negative exponents, Proc. R. Soc. Edinb., Sect. A, Volume 146 (2016) no. 1, pp. 195-212
[6] Remarks on entire solutions for two fourth-order elliptic problems, Proc. Edinb. Math. Soc., Volume 59 (2016) no. 3, pp. 777-786
[7] Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differ. Equ., Volume 2003 (2003) no. 37 (13 p)
[8] Liouville theorems for stable radial solutions for the biharmonic operator, Asymptot. Anal., Volume 69 (2010), pp. 87-98
Cited by Sources:
Comments - Policy