We show that, for any regular bounded domain , , there exist infinitely many global diffeomorphisms equal to the identity on ∂Ω that solve the Eikonal equation. We also provide explicit examples of such maps on annular domains. This implies that the ∞-Laplace system arising in vectorial calculus of variations in does not suffice to characterise either limits of p-Harmonic maps as or absolute minimisers in the sense of Aronsson.
Nous montrons que, pour tout domaine borné régulier , , il existe une infinité de difféomorphismes globaux qui sont solutions de l'équation iconale, égaux à l'identité sur ∂Ω. Nous donnons également des exemples explicites de telles cartes dans des domaines annulaires. Ceci implique que le système du type ∞-Laplacien apparaissant dans le calcul des variations vectoriel dans ne suffit pas à caractériser les limites pour des cartes p-harmoniques, ni les minimiseurs absolus au sens d'Aronsson.
Accepted:
Published online:
Nikos Katzourakis 1; Giles Shaw 
@article{CRMATH_2018__356_5_498_0, author = {Nikos Katzourakis and Giles Shaw}, title = {Counterexamples in calculus of variations in {\protect\emph{L}\protect\textsuperscript{\ensuremath{\infty}}} through the vectorial {Eikonal} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {498--502}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.04.010}, language = {en}, }
TY - JOUR AU - Nikos Katzourakis AU - Giles Shaw TI - Counterexamples in calculus of variations in L∞ through the vectorial Eikonal equation JO - Comptes Rendus. Mathématique PY - 2018 SP - 498 EP - 502 VL - 356 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2018.04.010 LA - en ID - CRMATH_2018__356_5_498_0 ER -
Nikos Katzourakis; Giles Shaw. Counterexamples in calculus of variations in L∞ through the vectorial Eikonal equation. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 498-502. doi : 10.1016/j.crma.2018.04.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.010/
[1] Existence of 1D vectorial absolute minimisers in under minimal assumptions, Proc. Amer. Math. Soc., Volume 145 (2017), pp. 2567-2575
[2] Extension of functions satisfying Lipschitz conditions, Ark. Mat., Volume 6 (1967), pp. 551-561
[3] On the partial differential equation , Ark. Mat., Volume 7 (1968), pp. 395-425
[4] A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), Volume 41 (2004) no. 4, pp. 439-505
[5] A pointwise characterisation of the PDE system of vectorial calculus of variations in , Proc. R. Soc. Edinb., Sect. A, Math. (2018) (in press)
[6] The Euler equation and absolute minimizers of functionals, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 255-283
[7] Limits as of and related extremal problems, Rend. Semin. Mat. Univ. Politec. Torino (1991), pp. 15-68 (special issue, 1989)
[8] A visit with the ∞-Laplacian, Cetraro (Lecture Notes in Mathematics), Volume vol. 1927 (2005)
[9] -solutions to the system of vectorial calculus of variations in via the Baire category method for the singular values, Discrete Contin. Dyn. Syst., Volume 37 (2017) no. 12, pp. 6165-6181
[10] The Pullback Equation for Differential Forms, Springer, New York, 2012
[11] Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, Springer, 1991
[12] Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal., Volume 123 (1993) no. 1, pp. 51-74
[13] variational problems for maps and the Aronsson PDE system, J. Differ. Equ., Volume 253 (2012) no. 7, pp. 2123-2139
[14] An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in , Springer Briefs in Mathematics, 2015 (150 pp)
[15] Nonuniqueness in vector-valued calculus of variations in and some linear elliptic systems, Commun. Pure Appl. Anal., Volume 14 (2015) no. 1, pp. 313-327
[16] Absolutely minimising generalised solutions to the equations of vectorial calculus of variations in , Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 1, pp. 1-25
[17] Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems, J. Differ. Equ., Volume 23 (2017), pp. 641-686
[18] Applied Functional Analysis: Main Principles and Their Applications, Springer, New York, 1995
Cited by Sources:
Comments - Policy