We are interested in the problem of retrieving information on the refractive index n of a penetrable inclusion embedded in a reference medium from farfield data associated with incident plane waves. Our approach relies on the use of transmission eigenvalues (TEs) that carry information on n and that can be determined from the knowledge of the farfield operator F. In this note, we explain how to modify F into a farfield operator , where is computed numerically, corresponding to well-chosen artificial background and for which the associated TEs provide more accessible information on n.
Nous souhaitons retrouver l'indice n d'une inclusion pénétrable dans un milieu de référence connu à partir de la donnée de champs lointains associés à des ondes planes incidentes. Pour ce faire, nous utilisons les valeurs propres de transmission (VPT) qui dépendent de n et qui peuvent être déterminées à partir de l'opérateur de champ lointain F. Dans cette note, nous expliquons comment modifier F en un opérateur de champ lointain , où est calculé numériquement, correspondant à un milieu de référence artificiel et pour lequel les VPT associées fournissent une information plus directe sur n.
Accepted:
Published online:
Lorenzo Audibert 1, 2; Lucas Chesnel 2; Houssem Haddar 2
@article{CRMATH_2018__356_6_626_0, author = {Lorenzo Audibert and Lucas Chesnel and Houssem Haddar}, title = {Transmission eigenvalues with artificial background for explicit material index identification}, journal = {Comptes Rendus. Math\'ematique}, pages = {626--631}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.04.015}, language = {en}, }
TY - JOUR AU - Lorenzo Audibert AU - Lucas Chesnel AU - Houssem Haddar TI - Transmission eigenvalues with artificial background for explicit material index identification JO - Comptes Rendus. Mathématique PY - 2018 SP - 626 EP - 631 VL - 356 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2018.04.015 LA - en ID - CRMATH_2018__356_6_626_0 ER -
%0 Journal Article %A Lorenzo Audibert %A Lucas Chesnel %A Houssem Haddar %T Transmission eigenvalues with artificial background for explicit material index identification %J Comptes Rendus. Mathématique %D 2018 %P 626-631 %V 356 %N 6 %I Elsevier %R 10.1016/j.crma.2018.04.015 %G en %F CRMATH_2018__356_6_626_0
Lorenzo Audibert; Lucas Chesnel; Houssem Haddar. Transmission eigenvalues with artificial background for explicit material index identification. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 626-631. doi : 10.1016/j.crma.2018.04.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.015/
[1] Qualitative Methods for Heterogeneous Media, École polytechnique, Palaiseau, France, 2015 (PhD thesis)
[2] A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Probl., Volume 30 (2014) no. 3
[3] New sets of eigenvalues in inverse scattering for inhomogeneous media and their determination from scattering data, Inverse Probl., Volume 33 (2017) no. 12
[4] Corners always scatter, Comment. Math. Phys., Volume 331 (2014) no. 2, pp. 725-753
[5] On the determination of Dirichlet or transmission eigenvalues from farfield data, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 7–8, pp. 379-383
[6] Inverse Scattering Theory and Transmission Eigenvalues, CBMS Series, SIAM Publications, vol. 88, 2016
[7] Transmission Eigenvalues in Inverse Scattering Theory Inverse Problems and Applications, Inside Out 60, MSRI Publications, Berkeley, CA, USA, 2013
[8] The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., Volume 42 (2010) no. 1, pp. 237-255
[9] Stekloff eigenvalues in inverse scattering, SIAM J. Appl. Math., Volume 76 (2016) no. 4, pp. 1737-1763
[10] Bilaplacian problems with a sign-changing coefficient, Math. Methods Appl. Sci., Volume 39 (2016) no. 17, pp. 4964-4979
[11] Computing estimates of material properties from transmission eigenvalues, Inverse Probl., Volume 28 (2012) no. 5
[12] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265
[13] The Factorization Method for Inverse Problems, vol. 36, Oxford University Press, 2008
[14] The inside–outside duality for scattering problems by inhomogeneous media, Inverse Probl., Volume 29 (2013) no. 10
Cited by Sources:
Comments - Policy