Comptes Rendus
Partial differential equations/Game theory
Mean-field games with a major player
Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 886-890.

We introduce and study mathematically a new class of mean-field-game systems of equations. This class of equations allows us to model situations involving one major player (or agent) and a “large” group of “small” players.

Nous introduisons et étudions mathématiquement une classe nouvelle de jeux à champ moyen. Les systèmes d'équations que nous présentons permettent de modéliser les situations faisant intervenir un joueur dominant et un « grand » groupe de « petits » joueurs.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.06.001

Jean-Michel Lasry 1; Pierre-Louis Lions 2

1 Université Paris-Dauphine–PSL, place du Maréchal-de Lattre-de-Tassigny, 75775 Paris cedex 16, France
2 Collège de France–PSL, 3 rue d'Ulm, 75005 Paris, France
@article{CRMATH_2018__356_8_886_0,
     author = {Jean-Michel Lasry and Pierre-Louis Lions},
     title = {Mean-field games with a major player},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {886--890},
     publisher = {Elsevier},
     volume = {356},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crma.2018.06.001},
     language = {en},
}
TY  - JOUR
AU  - Jean-Michel Lasry
AU  - Pierre-Louis Lions
TI  - Mean-field games with a major player
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 886
EP  - 890
VL  - 356
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2018.06.001
LA  - en
ID  - CRMATH_2018__356_8_886_0
ER  - 
%0 Journal Article
%A Jean-Michel Lasry
%A Pierre-Louis Lions
%T Mean-field games with a major player
%J Comptes Rendus. Mathématique
%D 2018
%P 886-890
%V 356
%N 8
%I Elsevier
%R 10.1016/j.crma.2018.06.001
%G en
%F CRMATH_2018__356_8_886_0
Jean-Michel Lasry; Pierre-Louis Lions. Mean-field games with a major player. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 886-890. doi : 10.1016/j.crma.2018.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.06.001/

[1] A. Bensoussan; M.H.M. Chau; S.C.P. Yan Mean field games with a dominating player, 2014 | arXiv

[2] P. Cardaliaguet Notes on mean field games, 2013 http://www.ceremade.dauphine.fr/~cardaliaguet (PDF file at)

[3] R. Carmona; F. Delarue Probabilistic Theory of Mean Field Games with Applications I–II, Springer, 2018

[4] M. Huang; P.P. Malhamé; P.E. Gaines Large population stochastic dynamics games, Commun. Inf. Syst., Volume 6 (2006), pp. 221-252

[5] P. Krusell; A.D. Sinith Income and wealth heterogeneity in the macroeconomy, J. Polit. Econ., Volume 106 (1998), pp. 867-896

[6] J-M. Lasry; P-L. Lions Jeux à champ moyen I. Le cas stationnaire, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 619-625

[7] J-M. Lasry; P-L. Lions Jeux à champ moyen II. Horizon fini et contrôle optimal, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 679-684

[8] J-M. Lasry; P-L. Lions Mean field games, Jpn. J. Math., Volume 2 (2007), pp. 229-260

[9] P-L. Lions, 2007–2012 http://www.college-de-france.fr/site/pierre-louis-lions (Videos and abstracts at)

Cited by Sources:

Comments - Policy