We introduce and study mathematically a new class of mean-field-game systems of equations. This class of equations allows us to model situations involving one major player (or agent) and a “large” group of “small” players.
Nous introduisons et étudions mathématiquement une classe nouvelle de jeux à champ moyen. Les systèmes d'équations que nous présentons permettent de modéliser les situations faisant intervenir un joueur dominant et un « grand » groupe de « petits » joueurs.
Accepted:
Published online:
Jean-Michel Lasry 1; Pierre-Louis Lions 2
@article{CRMATH_2018__356_8_886_0, author = {Jean-Michel Lasry and Pierre-Louis Lions}, title = {Mean-field games with a major player}, journal = {Comptes Rendus. Math\'ematique}, pages = {886--890}, publisher = {Elsevier}, volume = {356}, number = {8}, year = {2018}, doi = {10.1016/j.crma.2018.06.001}, language = {en}, }
Jean-Michel Lasry; Pierre-Louis Lions. Mean-field games with a major player. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 886-890. doi : 10.1016/j.crma.2018.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.06.001/
[1] Mean field games with a dominating player, 2014 | arXiv
[2] Notes on mean field games, 2013 http://www.ceremade.dauphine.fr/~cardaliaguet (PDF file at)
[3] Probabilistic Theory of Mean Field Games with Applications I–II, Springer, 2018
[4] Large population stochastic dynamics games, Commun. Inf. Syst., Volume 6 (2006), pp. 221-252
[5] Income and wealth heterogeneity in the macroeconomy, J. Polit. Econ., Volume 106 (1998), pp. 867-896
[6] Jeux à champ moyen I. Le cas stationnaire, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 619-625
[7] Jeux à champ moyen II. Horizon fini et contrôle optimal, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 679-684
[8] Mean field games, Jpn. J. Math., Volume 2 (2007), pp. 229-260
[9] http://www.college-de-france.fr/site/pierre-louis-lions (Videos and abstracts at)
, 2007–2012Cited by Sources:
Comments - Policy