We study the chemotaxis effect vs. logistic damping on boundedness for the well-known minimal Keller–Segel model with logistic source:
Nous étudions l'effet chimiotaxique versus l'amortissement logistique pour borner les solutions du modèle de Keller–Segel minimal bien connu avec source logistique :
Accepted:
Published online:
Hai-Yang Jin 1; Tian Xiang 2
@article{CRMATH_2018__356_8_875_0, author = {Hai-Yang Jin and Tian Xiang}, title = {Chemotaxis effect vs. logistic damping on boundedness in the {2-D} minimal {Keller{\textendash}Segel} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {875--885}, publisher = {Elsevier}, volume = {356}, number = {8}, year = {2018}, doi = {10.1016/j.crma.2018.07.002}, language = {en}, }
TY - JOUR AU - Hai-Yang Jin AU - Tian Xiang TI - Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller–Segel model JO - Comptes Rendus. Mathématique PY - 2018 SP - 875 EP - 885 VL - 356 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2018.07.002 LA - en ID - CRMATH_2018__356_8_875_0 ER -
Hai-Yang Jin; Tian Xiang. Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller–Segel model. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 875-885. doi : 10.1016/j.crma.2018.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.07.002/
[1] Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., Volume 25 (2015), pp. 1663-1763
[2] Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., Volume 35 (2015), pp. 1891-1904
[3] On convergence to equilibria for the Keller–Segel chemotaxis model, J. Differential Equations, Volume 236 (2007), pp. 551-569
[4] Partial Differential Equations, Holt, Rinehart and Winston, New York–Montréal, Québec–London, 1969
[5] Blow-up prevention by logistic sources in a parabolic–elliptic Keller–Segel system with singular sensitivity, Nonlinear Anal., Volume 109 (2014), pp. 56-71
[6] Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 151-169
[7] Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., Volume 436 (2016), pp. 970-982
[8] The one-dimensional chemotaxis model: global existence and asymptotic profile, Math. Methods Appl. Sci., Volume 27 (2004), pp. 1783-1801
[9] Spatio-temporal chaos in a chemotaxis model, Physica D, Volume 240 (2011), pp. 363-375
[10] Boundedness in a parabolic–elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., Volume 64 (2017), pp. 1-7
[11] Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177
[12] From 1970 until now: the Keller–Segel model in chemotaxis and its consequence I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103-165
[13] Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005), pp. 52-107
[14] Blowup and global solutions in a chemotaxis-growth system, Nonlinear Anal., Volume 135 (2016), pp. 57-72
[15] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415
[16] On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., Volume 343 (2008), pp. 379-398
[17] Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., Volume 258 (2015), pp. 1158-1191
[18] Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst., Ser. B, Volume 20 (2015), pp. 1499-1527
[19] Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 5025-5046
[20] Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, Volume 230 (1996), pp. 449-543
[21] Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., Volume 6 (2001), pp. 37-55
[22] Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433
[23] An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), Volume 20 (1966), pp. 733-737
[24] Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., Volume 51 (2002), pp. 119-144
[25] Finite dimensional attractor for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 441-469
[26] Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., Volume 8 (2001), pp. 349-367
[27] Global weak solutions in a PDE–ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., Volume 46 (2014), pp. 1969-2007
[28] Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., Volume 66 (2015), pp. 2555-2573
[29] Persistence of mass in a chemotaxis system with logistic source, J. Differ. Equ., Volume 259 (2015), pp. 6142-6161
[30] A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877
[31] Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905
[32] Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537
[33] Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767
[34] Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., Volume 257 (2014), pp. 1056-1077
[35] How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., Volume 24 (2014), pp. 809-855
[36] Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst., Ser. B, Volume 22 (2017), pp. 2777-2793
[37] On effects of sampling radius for the nonlocal Patlak–Keller–Segel chemotaxis model, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 4911-4946
[38] Boundedness and global existence in the higher-dimensional parabolic–parabolic chemotaxis system with/without growth source, J. Differ. Equ., Volume 258 (2015), pp. 4275-4323
[39] How strong a logistic damping can prevent blow-up for the minimal Keller–Segel chemotaxis system?, J. Math. Anal. Appl., Volume 459 (2018), pp. 1172-1200
[40] Dynamics in a parabolic–elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure Appl. Anal. (2018) (in press)
[41] Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source, J. Math. Anal. Appl., Volume 430 (2015), pp. 585-591
Cited by Sources:
Comments - Policy