[Action du groupe de Weyl sur l'espace de poids nul]
For any simple complex Lie group, we classify irreducible finite-dimensional representations ρ for which the longest element
Pour tout groupe de Lie complexe simple, nous classifions les représentations irréductibles ρ de dimension finie telles que le plus long mot
Accepté le :
Publié le :
Bruno Le Floch 1 ; Ilia Smilga 2
@article{CRMATH_2018__356_8_852_0, author = {Bruno Le Floch and Ilia Smilga}, title = {Action of {Weyl} group on zero-weight space}, journal = {Comptes Rendus. Math\'ematique}, pages = {852--858}, publisher = {Elsevier}, volume = {356}, number = {8}, year = {2018}, doi = {10.1016/j.crma.2018.06.005}, language = {en}, }
Bruno Le Floch; Ilia Smilga. Action of Weyl group on zero-weight space. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 852-858. doi : 10.1016/j.crma.2018.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.06.005/
[1] On local isometric immersions of Riemannian symmetric spaces, Tohoku Math. J., Volume 36 (1984), pp. 107-140
[2] Éléments de mathématique, groupes et algèbres de Lie : chapitres 4, 5 et 6, Hermann, 1968
[3] Lie Groups, Lie Algebras and Representations: An Elementary Introduction, Springer International Publishing, 2015
[4] Weyl group representations on zero weight spaces, 2014 http://people.math.umass.edu/~jeh/pub/zero.pdf
[5] Lie Groups Beyond an Introduction, Birkhäuser, 1996
[6] Invariant Theory, Springer, 1994
[7] Proper affine actions: a sufficient criterion (submitted, available at) | arXiv
[8] SageMath, the Sage Mathematics Software System (Version 8.1), 2017 http://www.sagemath.org
[9] Branching rules http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/root_system/branching_rules.html
[10] LiE, a package for Lie group computations, 2000 http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/
Cité par Sources :
Commentaires - Politique