For , we consider the Ginzburg–Landau functional for -valued maps defined in the unit ball with the vortex boundary data x on . In dimensions , we prove that, for every , there exists a unique global minimizer of this problem; moreover, is symmetric and of the form for .
Nous considérons la fonctionnelle de Ginzburg–Landau pour les applications à valeurs dans définies dans la boule unité avec la donnée de tourbillon x au bord . En dimension , nous montrons que, pour tout , il existe un unique minimiseur global à ce problème ; de plus, est symétrique de la forme pour .
Accepted:
Published online:
Radu Ignat 1; Luc Nguyen 2; Valeriy Slastikov 3; Arghir Zarnescu 4, 5, 6
@article{CRMATH_2018__356_9_922_0, author = {Radu Ignat and Luc Nguyen and Valeriy Slastikov and Arghir Zarnescu}, title = {Uniqueness of degree-one {Ginzburg{\textendash}Landau} vortex in the unit ball in dimensions {\protect\emph{N} \ensuremath{\geq} 7}}, journal = {Comptes Rendus. Math\'ematique}, pages = {922--926}, publisher = {Elsevier}, volume = {356}, number = {9}, year = {2018}, doi = {10.1016/j.crma.2018.07.006}, language = {en}, }
TY - JOUR AU - Radu Ignat AU - Luc Nguyen AU - Valeriy Slastikov AU - Arghir Zarnescu TI - Uniqueness of degree-one Ginzburg–Landau vortex in the unit ball in dimensions N ≥ 7 JO - Comptes Rendus. Mathématique PY - 2018 SP - 922 EP - 926 VL - 356 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2018.07.006 LA - en ID - CRMATH_2018__356_9_922_0 ER -
%0 Journal Article %A Radu Ignat %A Luc Nguyen %A Valeriy Slastikov %A Arghir Zarnescu %T Uniqueness of degree-one Ginzburg–Landau vortex in the unit ball in dimensions N ≥ 7 %J Comptes Rendus. Mathématique %D 2018 %P 922-926 %V 356 %N 9 %I Elsevier %R 10.1016/j.crma.2018.07.006 %G en %F CRMATH_2018__356_9_922_0
Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu. Uniqueness of degree-one Ginzburg–Landau vortex in the unit ball in dimensions N ≥ 7. Comptes Rendus. Mathématique, Volume 356 (2018) no. 9, pp. 922-926. doi : 10.1016/j.crma.2018.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.07.006/
[1] Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser Boston Inc., Boston, MA, USA, 1994
[2] Symmetry in nonlinear PDE's, La Pietra 1996 (Florence, Italy) (Proceedings of Symposia in Pure Mathematics), Volume vol. 65, American Mathematical Society, Providence, RI, USA (1999), pp. 1-12
[3] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 649-705
[4] Minimizing p-harmonic maps into spheres, J. Reine Angew. Math., Volume 401 (1989), pp. 82-100
[5] Uniqueness results for an ODE related to a generalized Ginzburg–Landau model for liquid crystals, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3390-3425
[6] Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 2, pp. 633-673
[7] On the uniqueness of minimisers of Ginzburg–Landau functionals, 2017 (To appear in Ann. Sci. Éc. Norm. Supér) | arXiv
[8] Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math., Volume 343 (1983), pp. 146-161
[9] A remark on the map , C. R. Acad. Sci. Paris, Ser. I, Volume 305 (1987) no. 12, pp. 529-531
[10] Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional, J. Eur. Math. Soc., Volume 12 (2010) no. 5, pp. 1069-1096
[11] Les minimiseurs locaux pour l'équation de Ginzburg–Landau sont à symétrie radiale, C. R. Acad. Sci. Paris, Ser. I, Volume 323 (1996) no. 6, pp. 593-598
[12] Linear and Nonlinear Aspects of Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 39, Birkhäuser Boston, Inc., Boston, MA, USA, 2000 (The Ginzburg–Landau model)
[13] Two results on the equivariant Ginzburg–Landau vortex in arbitrary dimension, J. Funct. Anal., Volume 260 (2011) no. 3, pp. 892-905
Cited by Sources:
Comments - Policy