We give two conditions that are necessary and sufficient for the uniqueness of Filippov solutions to scalar, autonomous ordinary differential equations with discontinuous velocity fields. When only one of the two conditions is satisfied, we give a natural selection criterion that guarantees uniqueness of the solution.
Nous donnons deux conditions nécessaires et suffisantes pour l'unicité des solutions de Filippov des équations différentielles ordinaires autonomes scalaires, avec champs de vitesse discontinus. Lorsqu'une seule de ces deux conditions est satisfaite, nous donnons un critère naturel sélectionnant une unique solution.
Accepted:
Published online:
Ulrik Skre Fjordholm 1
@article{CRMATH_2018__356_9_916_0, author = {Ulrik Skre Fjordholm}, title = {Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {916--921}, publisher = {Elsevier}, volume = {356}, number = {9}, year = {2018}, doi = {10.1016/j.crma.2018.07.008}, language = {en}, }
Ulrik Skre Fjordholm. Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations. Comptes Rendus. Mathématique, Volume 356 (2018) no. 9, pp. 916-921. doi : 10.1016/j.crma.2018.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.07.008/
[1] Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, Series in Real Analysis, vol. 6, World Scientific Publishing Co, 1993
[2] Set-Valued Analysis, Birkhäuser, Basel, Switzerland, 2009
[3] The differential equation , J. Differ. Equ., Volume 31 (1979) no. 2, pp. 183-199
[4] Ordinary differential equations and systems with time-dependent discontinuity sets, Proc. R. Soc. Edinb. A, Volume 134 (2004) no. 4, pp. 617-637
[5] Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 1, Walter de Gruyter, 1992
[6] Differential equations with discontinuous right-hand side, Mat. Sb., Volume 5 (1960), pp. 99-127 (English transl. in Amer. Math. Transl., 42, 1964, pp. 199-231)
[7] Differential equations with discontinuous right-hand sides, J. Math. Anal. Appl., Volume 154 (1991) no. 2, pp. 377-390
[8] Beweis der Existenz einer Lösung der Differentialgleichung ohne Hinzunahme der Cauchy–Lipschitz'schen Bedingung, Monatsh. Math. Phys., Volume 9 (1898) no. 1, pp. 331-345
[9] Well-distributed measurable sets, Amer. Math. Mon., Volume 90 (1983) no. 1, pp. 41-42
Cited by Sources:
Comments - Policy