Iwasawa algebras are completed group algebras of compact p-adic Lie groups. Ardakov and Venjakob have studied the structure theory and the ring-theoretic properties of such algebras. This article gives an explicit presentation by generators and relations of the Iwasawa algebras of uniform pro-p groups, i.e. the pro-p groups that admit a p-adic analytic manifold structure.
Les algèbres d'Iwasawa sont des algèbres de groupes complétées des groupes de Lie p-adiques compacts. Ardakov et Venjakob ont étudié la structure et les propriétés d'anneaux de telles algèbres. Cette note donne une présentation explicite par générateurs et relations des algèbres d'Iwasawa des pro-p-groupes uniformes, c'est-à-dire des pro-p-groupes qui admettent une structure de variété analytique p-adique.
Accepted:
Published online:
Jishnu Ray 1
@article{CRMATH_2018__356_11-12_1075_0, author = {Jishnu Ray}, title = {Explicit ring-theoretic presentation of {Iwasawa} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {1075--1080}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.09.002}, language = {en}, }
Jishnu Ray. Explicit ring-theoretic presentation of Iwasawa algebras. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1075-1080. doi : 10.1016/j.crma.2018.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.09.002/
[1] Erratum: Normal elements of completed group algebras over [MR2747414], Int. J. Algebra Comput., Volume 23 (2013) no. 1, p. 215
[2] Presentation of an Iwasawa algebra: the case of , Doc. Math., Volume 16 (2011), pp. 545-559
[3] Analytic Pro-p Groups, Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 2003
[4] Normal elements of completed group algebras over , 2018 (preprint) | arXiv
[5] Groupes analytiques p-adiques, Inst. Hautes Études Sci. Publ. Math., Volume 26 (1965), pp. 389-603
[6] Zariskian Filtrations, K-Monographs in Mathematics, vol. 2, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1996
[7] Presentation of the Iwasawa algebra of the pro-p Iwahori subgroup of , 2017 (preprint) | arXiv
[8] Presentation of the Iwasawa algebra of the first congruence kernel of a semi-simple, simply connected chevalley group over , J. Algebra, Volume 511 (Oct 2018), pp. 405-419
[9] p-Adic Lie Groups, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 344, Springer, Heidelberg, Germany, 2011
[10] Algebras of p-adic distributions and admissible representations, Invent. Math., Volume 153 (2003) no. 1, pp. 145-196
[11] On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc., Volume 4 (2002) no. 3, pp. 271-311
Cited by Sources:
Comments - Policy