Let and be the coefficients of the Rogers–Ramanujan identities. We obtain asymptotic formulas for the number of odd values of for odd n, and for even n, which improve Gordon's results. We also obtain lower bounds for the number of odd values of for even n, and for odd n.
Soit et les coefficients des identités de Rogers–Ramanujan. Nous obtenons des formules asymptotiques pour le nombre de valeurs impaires de lorsque n est impair et de lorsque n est pair. Ces formules améliorent un résultat de Gordon. Nous obtenons également des bornes inférieures pour le nombre de valeurs impaires de pour n pair et de pour n impair.
Accepted:
Published online:
Shi-Chao Chen 1
@article{CRMATH_2018__356_11-12_1081_0, author = {Shi-Chao Chen}, title = {Odd values of the {Rogers{\textendash}Ramanujan} functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1081--1084}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.10.002}, language = {en}, }
Shi-Chao Chen. Odd values of the Rogers–Ramanujan functions. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1081-1084. doi : 10.1016/j.crma.2018.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.002/
[1] Nonzero coefficients of half-integral weight modular forms mod ℓ, Res. Math. Sci., Volume 5 (2018), p. 6
[2] A proof of some identities of Ramanujan using modular forms, Glasg. Math. J., Volume 31 (1989), pp. 271-295
[3] (Dev. Math.), Volume vol. 23, Springer, New York (2012), pp. 83-93
[4] On the 2- and 4-dissections of the Rogers–Ramanujan functions, Ramanujan J., Volume 40 (2016) no. 2, pp. 227-235
[5] (CBMS Regional Conference Series in Mathematics) (2004), p. 17
Cited by Sources:
Comments - Policy