Let E be a rational elliptic curve and let p be an odd prime of additive reduction. Let K be an imaginary quadratic field and fix a positive integer c prime to the conductor of E. The main goal of the present article is to define an anticyclotomic p-adic L-function attached to when attains semistable reduction over an abelian extension. We prove that satisfies the expected interpolation properties; namely, we show that if χ is an anticyclotomic character of conductor , then is equal (up to explicit constants) to or .
Soit E une courbe elliptique rationnelle et p un premier impair de réduction additive. Soit K un corps quadratique imaginaire et c un entier positif, premier au conducteur de E. Le but de cette Note est de définir une fonction L p-adique, anti-cyclotomique, notée , attachée à lorsque atteint la réduction semi-stable sur une extension abélienne. Nous montrons que satisfait les propriétés d'interpolation escomptées. Précisément, nous montrons que, si χ est un caractère anti-cyclotomique de conducteur , alors est égal (à des constantes explicites près) à ou .
Accepted:
Published online:
Daniel Kohen 1; Ariel Pacetti 2
@article{CRMATH_2018__356_10_973_0, author = {Daniel Kohen and Ariel Pacetti}, title = {Anticyclotomic \protect\emph{p}-adic {\protect\emph{L}-functions} for elliptic curves at some additive reduction primes}, journal = {Comptes Rendus. Math\'ematique}, pages = {973--983}, publisher = {Elsevier}, volume = {356}, number = {10}, year = {2018}, doi = {10.1016/j.crma.2018.09.005}, language = {en}, }
TY - JOUR AU - Daniel Kohen AU - Ariel Pacetti TI - Anticyclotomic p-adic L-functions for elliptic curves at some additive reduction primes JO - Comptes Rendus. Mathématique PY - 2018 SP - 973 EP - 983 VL - 356 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2018.09.005 LA - en ID - CRMATH_2018__356_10_973_0 ER -
Daniel Kohen; Ariel Pacetti. Anticyclotomic p-adic L-functions for elliptic curves at some additive reduction primes. Comptes Rendus. Mathématique, Volume 356 (2018) no. 10, pp. 973-983. doi : 10.1016/j.crma.2018.09.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.09.005/
[1] Distributions p-adiques associées aux séries de Hecke, Conférence, Université de Bordeaux, Bordeaux, France, 1974 (Astérisque), Volume vol. 24–25, Soc. Math. France, Paris (1975), pp. 119-131
[2] Heegner points on Mumford–Tate curves, Invent. Math., Volume 126 (1996) no. 3, pp. 413-456
[3] Iwasawa's main conjecture for elliptic curves over anticyclotomic -extensions, Ann. of Math. (2), Volume 162 (2005) no. 1, pp. 1-64
[4] On the modularity of elliptic curves over : wild 3-adic exercises, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939
[5] Explicit Gross–Zagier and Waldspurger formulae, Algebra Number Theory, Volume 8 (2014) no. 10, pp. 2523-2572
[6] Special values of anticyclotomic L-functions for modular forms, J. Reine Angew. Math. (Crelles J.), Volume 741 (2018), pp. 87-131
[7] Nontriviality of Rankin–Selberg L-functions and CM points, L-Functions and Galois Representations, Lond. Math. Soc. Lect. Note Ser., vol. 320, Cambridge University Press, Cambridge, UK, 2007, pp. 121-186
[8] The anticyclotomic main conjecture for elliptic curves at supersingular primes, J. Inst. Math. Jussieu, Volume 7 (2008) no. 2, pp. 291-325
[9] Iwasawa theory for elliptic curves at unstable primes, Compos. Math., Volume 113 (1998) no. 2, pp. 123-153
[10] Les constantes des équations fonctionnelles des fonctions L, Lect. Notes Math., Volume 349 (1973), pp. 501-597
[11] A First Course in Modular Forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005
[12] The p-adic Gross–Zagier formula on Shimura curves, Compos. Math., Volume 153 (2017) no. 10, pp. 1987-2074
[13] Local orders, root numbers, and modular curves, Amer. J. Math., Volume 110 (1988) no. 6, pp. 1153-1182
[14] Test vectors for linear forms, Math. Ann., Volume 291 (1991) no. 2, pp. 343-355
[15] Automorphic Forms on . Part II, Lecture Notes in Mathematics, vol. 278, Springer-Verlag, Berlin–New York, 1972
[16] p-Adic Hodge theory and values of zeta functions of modular forms, Astérisque, Volume 295:ix (2004), pp. 117-290
[17] Heegner Point Constructions, University of Buenos Aires, 2017 (PhD thesis)
[18] On Heegner points for primes of additive reduction ramifying in the base field, Trans. Amer. Math. Soc., Volume 370 (2018) no. 2, pp. 911-926
[19] Exceptional zero formulae for anticyclotomic p-adic L-functions of elliptic curves in the ramified case, J. Number Theory, Volume 190 (2018), pp. 187-211
[20] Quaternion algebras, Heegner points and the arithmetic of Hida families, Manuscr. Math., Volume 135 (2011) no. 3–4, pp. 273-328
[21] Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266
[22] Arithmetic of Weil curves, Invent. Math., Volume 25 (1974), pp. 1-61
[23] On p-adic analogues of the conjectures of Birch and Swinnerton–Dyer, Invent. Math., Volume 84 (1986) no. 1, pp. 1-48
[24] Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math., Volume 115 (1994) no. 1, pp. 81-161 (With an appendix by Jean–Marc Fontaine)
[25] On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003) no. 3, pp. 523-558
[26] On Tunnell's formula for characters of , Compos. Math., Volume 85 (1993) no. 1, pp. 99-108
[27] Local ϵ-factors and characters of , Amer. J. Math., Volume 105 (1983) no. 6, pp. 1277-1307
[28] p-Adic interpolation of automorphic periods for , Doc. Math., Volume 22 (2017), pp. 1467-1499
[29] Arithmétique des Algèbres de Quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980
[30] Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.), Volume 99(141) (1976) no. 2, pp. 248-260 (296)
[31] Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2), Volume 141 (1995) no. 3, pp. 443-551
[32] The Gross–Zagier Formula on Shimura Curves, Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, NJ, USA, 2013
Cited by Sources:
Comments - Policy