We revisit the classical theory of multidimensional scalar conservation laws. We reformulate the notion of the classical Kruzkov entropy solutions and study some new properties as well as the well-posedness of the initial value problem with inhomogeneous fluxes and general initial data. We also consider Dirichlet boundary value problems. We put forward a new and transparent definition for solutions and give a simple proof for their well-posedness in domains with smooth boundaries. Finally, we introduce the notion of saturated solutions and show that it is well-posed.
Nous revenons sur la théorie classique des lois de conservation scalaires multidimensionnelles. Nous introduisons une notion nouvelle de sous- et de sur-solutions, qui est équivalente à la notion classique de solutions entropiques à la Kruzkov. Nous utilisons ensuite cette notion pour établir des propriétés nouvelles de ces solutions. Nous proposons également une formulation nouvelle et claire des solutions pour les problèmes aux limites et nous donnons une preuve simple du caractère bien posé de ces problèmes. Enfin, nous introduisons la notion de solutions saturées et montrons que de tels problèmes sont bien posés.
Accepted:
Published online:
Pierre-Louis Lions 1, 2; Panagiotis Souganidis 3
@article{CRMATH_2018__356_11-12_1167_0, author = {Pierre-Louis Lions and Panagiotis Souganidis}, title = {Scalar conservation laws: {Initial} and boundary value problems revisited and saturated solutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1167--1178}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.09.010}, language = {en}, }
TY - JOUR AU - Pierre-Louis Lions AU - Panagiotis Souganidis TI - Scalar conservation laws: Initial and boundary value problems revisited and saturated solutions JO - Comptes Rendus. Mathématique PY - 2018 SP - 1167 EP - 1178 VL - 356 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2018.09.010 LA - en ID - CRMATH_2018__356_11-12_1167_0 ER -
%0 Journal Article %A Pierre-Louis Lions %A Panagiotis Souganidis %T Scalar conservation laws: Initial and boundary value problems revisited and saturated solutions %J Comptes Rendus. Mathématique %D 2018 %P 1167-1178 %V 356 %N 11-12 %I Elsevier %R 10.1016/j.crma.2018.09.010 %G en %F CRMATH_2018__356_11-12_1167_0
Pierre-Louis Lions; Panagiotis Souganidis. Scalar conservation laws: Initial and boundary value problems revisited and saturated solutions. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1167-1178. doi : 10.1016/j.crma.2018.09.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.09.010/
[1] Scalar conservation laws with general boundary condition and continuous flux function, J. Differ. Equ., Volume 228 (2006) no. 1, pp. 111-139
[2] Well-posedness of general boundary-value problems for scalar conservation laws, Trans. Amer. Math. Soc., Volume 367 (2015) no. 6, pp. 3763-3806
[3] First order quasilinear equations with boundary conditions, Commun. Partial Differ. Equ., Volume 4 (1979) no. 9, pp. 1017-1034
[4] Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differ. Equ., Volume 71 (1988) no. 1, pp. 93-122
[5] First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), Volume 81 (1970) no. 123, pp. 228-255
[6] P.-L. Lions, P.E. Souganidis, Scalar conservation laws revisited, in preparation.
[7] Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris, Ser. I, Volume 322 (1996) no. 8, pp. 729-734
[8] -contraction and uniqueness for quasilinear elliptic–parabolic equations, J. Differ. Equ., Volume 131 (1996) no. 1, pp. 20-38
[9] Existence of strong traces for generalized solutions of multidimensional scalar conservation laws, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 4, pp. 885-908
[10] solutions to first order hyperbolic equations in bounded domains, Commun. Partial Differ. Equ., Volume 28 (2003) no. 1–2, pp. 381-408
[11] Oscillation properties of scalar conservation laws, Aug 2017 http://adsabs.harvard.edu/abs/2017arXiv170803401S (arXiv e-print Provided by the SAO/NASA Astrophysics Data System) | arXiv
[12] Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., Volume 160 (2001) no. 3, pp. 181-193
Cited by Sources:
☆ Partially supported by the National Science Foundation grants DMS-1600129 and the Office of Naval Research grant N000141712095.
Comments - Policy