In this note, we consider the fall of an axisymmetric body in a perfect fluid over a ramp. It was shown in [12] that the possibility of a collision between the body and the ramp is related to the asymptotics of the so-called added mass when the distance between the ramp and the body goes to 0. We propose here a new method to compute this added mass, which provides simultaneously an approximation of an associated fluid velocity field in the gap between the ramp and the body.
Dans cette note, nous considérons la chute d'un solide axisymétrique dans un fluide parfait au-dessus d'un plan. Il est connu [12] que l'éventualité d'un contact entre le solide et le plan est reliée à l'asymptotique de l'effet de masse ajoutée quand la distance entre le plan et le solide tend vers 0. Nous proposons une nouvelle méthode pour calculer cet effet de masse ajoutée, qui fournit simultanément l'asymptotique d'un champ de vitesses associé entre le solide et le plan.
Accepted:
Published online:
Matthieu Hillairet 1; Diaraf Seck 2, 3; Lamine Sokhna 1, 2, 3
@article{CRMATH_2018__356_11-12_1156_0, author = {Matthieu Hillairet and Diaraf Seck and Lamine Sokhna}, title = {Note on the fall of an axisymmetric body in a perfect fluid over a horizontal ramp}, journal = {Comptes Rendus. Math\'ematique}, pages = {1156--1166}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.10.001}, language = {en}, }
TY - JOUR AU - Matthieu Hillairet AU - Diaraf Seck AU - Lamine Sokhna TI - Note on the fall of an axisymmetric body in a perfect fluid over a horizontal ramp JO - Comptes Rendus. Mathématique PY - 2018 SP - 1156 EP - 1166 VL - 356 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2018.10.001 LA - en ID - CRMATH_2018__356_11-12_1156_0 ER -
%0 Journal Article %A Matthieu Hillairet %A Diaraf Seck %A Lamine Sokhna %T Note on the fall of an axisymmetric body in a perfect fluid over a horizontal ramp %J Comptes Rendus. Mathématique %D 2018 %P 1156-1166 %V 356 %N 11-12 %I Elsevier %R 10.1016/j.crma.2018.10.001 %G en %F CRMATH_2018__356_11-12_1156_0
Matthieu Hillairet; Diaraf Seck; Lamine Sokhna. Note on the fall of an axisymmetric body in a perfect fluid over a horizontal ramp. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1156-1166. doi : 10.1016/j.crma.2018.10.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.001/
[1] Finite time singularity formation for moving interface Euler equations (preprint) | arXiv
[2] The motion of suspended particles almost in contact, Int. J. Multiph. Flow, Volume 1 (1974), pp. 343-371
[3] On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ., Volume 3 (2003) no. 3, pp. 419-441
[4] Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., Volume 195 (2010) no. 2, pp. 375-407
[5] Computation of the drag force on a sphere close to a wall: the roughness issue, ESAIM: Math. Model. Numer. Anal., Volume 46 (2012) no. 5, pp. 1201-1224
[6] Collisions of Smooth Bodies in Viscous Fluids: A Mathematical Investigation, University of Minnesota, Twin Cities, MN, USA, October 2005 (PhD thesis)
[7] Justification of lubrication approximation: an application to fluid/solid interactions, Asymptot. Anal., Volume 95 (2015) no. 3–4, pp. 187-241
[8] Blow up and grazing collision in viscous fluid solid interaction systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010) no. 1, pp. 291-313
[9] On the motion and collisions of rigid bodies in an ideal fluid, Asymptot. Anal., Volume 56 (2008) no. 3–4, pp. 125-158
[10] Collisional Dynamics of Macroscopic Particles in a Viscous Fluid, California Institute of Technology, Pasadena, CA, USA, May 2003 (PhD thesis)
[11] Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994
[12] Asymptotic analysis of a Neumann problem in a domain with cusp. Application to the collision problem of rigid bodies in a perfect fluid, SIAM J. Math. Anal., Volume 47 (2015) no. 6, pp. 4360-4403
[13] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., Volume 161 (2002) no. 2, pp. 113-147
[14] Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous incompressible fluid, J. Math. Sci., Volume 130 (2005) no. 4, pp. 4893-4898
[15] Navier–Stokes Equations, North-Holland Publ. Co., Amsterdam, The Netherlands, 1977
Cited by Sources:
Comments - Policy