[Number of irreducible ℓ-adic local systems on a curve]
Let be a projective, smooth, and geometrically connected curve over with elements where p is a prime number, and let X be its base change to an algebraic closure of . The goal of this article is to announce a formula for the number of irreducible ℓ-adic local systems () with a fixed rank over X fixed by the Frobenius endomorphism. This number behaves like a Grothendieck–Lefschetz fixed point formula for a variety over , which generalises a result of Drinfeld in rank 2 and proves a conjecture of Deligne. We also sketch our method, which consists in passing to the automorphic side by Langlands correspondence, then calculating all the terms in Arthur's non-invariant trace formula and linking the geometric part of trace formula to the number of -points of the moduli space of stable Higgs bundles.
Soit une courbe projective lisse et géométriquement connexe sur un corps fini avec éléments, où p est un nombre premier. Soit X le changement de base de à une clôture algébrique de . Le but de cet article est d'annoncer une formule pour le nombre de systèmes locaux ℓ-adiques () irréductibles de rang donné sur X fixés par l'endomorphisme de Frobenius. Celle-ci est semblable à une formule des points fixes de Grothendieck–Lefschetz pour une variété sur , ce qui généralise un résultat de Drinfeld en rang 2 et prouve une conjecture de Deligne. Nous esquissons notre méthode, qui consiste à passer du côté automorphe, calculer tous les termes de la formule des traces d'Arthur non invariante et relier la partie géométrique de la formule des traces avec le nombre de -points de l'espace des modules des fibrés de Higgs stables.
Accepted:
Published online:
Hongjie Yu 1
@article{CRMATH_2018__356_11-12_1085_0, author = {Hongjie Yu}, title = {Le nombre des syst\`emes locaux \protect\emph{\ensuremath{\ell}}-adiques sur une courbe}, journal = {Comptes Rendus. Math\'ematique}, pages = {1085--1089}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.10.007}, language = {fr}, }
Hongjie Yu. Le nombre des systèmes locaux ℓ-adiques sur une courbe. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1085-1089. doi : 10.1016/j.crma.2018.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.007/
[1] A trace formula for reductive groups. I. Terms associated to classes in G(Q), Duke Math. J., Volume 45 (1978) no. 4, pp. 911-952
[2] Sur le comptage des fibrés de Hitchin, Astérisque, Volume 369 (2015), pp. 223-284
[3] Cours à l'IHES http://www.ihes.fr/~abbes/CAGA/deligne.html
[4] Comptage de faisceaux ℓ-adiques, Astérisque, Volume 369 (2015), pp. 285-312
[5] Counting local systems with principal unipotent local monodromy, Ann. of Math. (2), Volume 178 (2013) no. 3, pp. 921-982
[6] The number of two-dimensional irreducible representations of the fundamental group of a curve over a finite field, Funkc. Anal. Prilozh., Volume 15 (1981) no. 4, pp. 75-76
[7] Counting rank two local systems with at most one, unipotent, monodromy, Amer. J. Math., Volume 137 (2015) no. 3, pp. 739-763
[8] Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration | arXiv
[9] Mixed Hodge polynomials of character varieties, Invent. Math., Volume 174 (2008) no. 3, pp. 555-624
[10] Notes on motives in finite characteristic, Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, vol. II, Progress in Mathematics, vol. 270, Birkhäuser Boston, Inc., Boston, MA, USA, 2009, pp. 213-247
[11] Chtoucas de Drinfeld et conjecture de Ramanujan–Petersson, Astérisque, Volume 243 (1997) (ii + 329 p)
[12] Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., Volume 147 (2002) no. 1, pp. 1-241
[13] Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures) | arXiv
[14] Counting Higgs bundles | arXiv
[15] Representation varieties and character varieties, Publ. Res. Inst. Math. Sci., Volume 36 (2000) no. 2, pp. 159-189
[16] Moduli space of semistable pairs on a curve, Proc. Lond. Math. Soc. (3), Volume 62 (1991) no. 2, pp. 275-300
[17] Indecomposable vector bundles and stable Higgs bundles over smooth projective curves, Ann. of Math. (2), Volume 183 (2016) no. 1, pp. 297-362
Cited by Sources:
Comments - Policy