We construct an example of a combinatorially large measure-zero set.
Nous construisons un exemple d'un ensemble combinatoirement grand, mais de mesure zéro.
Accepted:
Published online:
Tomek Bartoszynski 1; Saharon Shelah 2
@article{CRMATH_2018__356_11-12_1053_0, author = {Tomek Bartoszynski and Saharon Shelah}, title = {A note on small sets of reals}, journal = {Comptes Rendus. Math\'ematique}, pages = {1053--1061}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.11.003}, language = {en}, }
Tomek Bartoszynski; Saharon Shelah. A note on small sets of reals. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1053-1061. doi : 10.1016/j.crma.2018.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.003/
[1] On covering of real line by null sets, Pac. J. Math., Volume 131 (1988) no. 1, pp. 1-12
[2] On the structure of measurable filters on a countable set, Real Anal. Exch., Volume 17 (1992) no. 2, pp. 681-701
[3] Set Theory: on the Structure of the Real Line, A.K. Peters, 1995
[4] On T. Bartoszynski structure theorem for measurable filters, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 7–8, pp. 281-284
Cited by Sources:
Comments - Policy