[Raffinements topologiques et équidistributionnels de la conjecture d'André–Pink–Zannier en un nombre fini de places]
On présente quelques applications des résultats récents en dynamique homogène à un problème d'intersections atypiques dans les variétés de Shimura (la conjecture de André–Pink–Zannier) et ses raffinements.
We present some applications of recent results in homogeneous dynamics to an unlikely intersections problem in Shimura varieties (the André–Pink–Zannier conjecture) and its refinements.
Accepté le :
Publié le :
Rodolphe Richard 1 ; Andrei Yafaev 2
@article{CRMATH_2019__357_3_231_0, author = {Rodolphe Richard and Andrei Yafaev}, title = {Topological and equidistributional refinement of the {Andr\'e{\textendash}Pink{\textendash}Zannier} conjecture at finitely many places}, journal = {Comptes Rendus. Math\'ematique}, pages = {231--235}, publisher = {Elsevier}, volume = {357}, number = {3}, year = {2019}, doi = {10.1016/j.crma.2019.01.013}, language = {en}, }
TY - JOUR AU - Rodolphe Richard AU - Andrei Yafaev TI - Topological and equidistributional refinement of the André–Pink–Zannier conjecture at finitely many places JO - Comptes Rendus. Mathématique PY - 2019 SP - 231 EP - 235 VL - 357 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2019.01.013 LA - en ID - CRMATH_2019__357_3_231_0 ER -
%0 Journal Article %A Rodolphe Richard %A Andrei Yafaev %T Topological and equidistributional refinement of the André–Pink–Zannier conjecture at finitely many places %J Comptes Rendus. Mathématique %D 2019 %P 231-235 %V 357 %N 3 %I Elsevier %R 10.1016/j.crma.2019.01.013 %G en %F CRMATH_2019__357_3_231_0
Rodolphe Richard; Andrei Yafaev. Topological and equidistributional refinement of the André–Pink–Zannier conjecture at finitely many places. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 231-235. doi : 10.1016/j.crma.2019.01.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.01.013/
[1] Around the Zilber–Pink Conjecture, Panoramas et Synthèses, vol. 52, 2017
[2] The hyperbolic Ax–Lindemann–Weierstrass conjecture, Publ. Math. Inst. Hautes Études Sci., Volume 123 (2016), pp. 333-360
[3] J. Milne, Shimura varieties, available on author's web page.
[4] Linearity properties of Shimura varieties. I, J. Algebraic Geom., Volume 7 (1998), pp. 539-567
[5] Families of abelian varieties with many isogenous fibres, J. Reine Angew. Math., Volume 705 (2015), pp. 211-231
[6] A combination of the conjectures of Mordell-Lang and André-Oort, Geometric Methods in Algebra and Number Theory, Progr. Math., vol. 235, 2005, pp. 251-282
[7] Stabilité analytique et convergence locale de translatées en dynamique homogène S-arithmétique, C. R. Acad. Sci. Paris, Ser. I, Volume 357 (2019) no. 3, pp. 241-246
[8] R. Richard, T. Zamojski, Limit distribution of translated pieces of possibly irrational leaves in S-arithmetic homogeneous spaces, in: R. Richard, A. Yafaev, T. Zamojski (Eds.), Homogeneous Dynamics and Unlikely Intersections, available on ArXiv.
[9] R. Richard, A. Yafaev, Inner Galois equidistribution in S-Hecke orbits, in: R. Richard, A. Yafaev, T. Zamojski (Eds.), Homogeneous Dynamics and Unlikely Intersections, available on ArXiv.
[10] Quelques applications du theorème d'Ax–Lindemann hyperbolique, Compos. Math., Volume 150 (2014) no. 2, pp. 175-190
[11] Some Problems of Unlikely Intersections in Arithmetic and Geometry. With Appendixes by David Masser, Annals of Mathematics Studies, vol. 181, Princeton University Press, Princeton, NJ, USA, 2012 (xiv+160 p)
Cité par Sources :
Commentaires - Politique