We prove well-posedness and regularity results for elliptic boundary value problems on certain singular domains that are conformally equivalent to manifolds with boundary and bounded geometry. Our assumptions are satisfied by the domains with a smooth set of singular cuspidal points, and hence our results apply to the class of domains with isolated oscillating conical singularities. In particular, our results generalize the classical -well-posedness result of Kondratiev for the Laplacian on domains with conical points. However, our domains and coefficients are too general to allow for singular function expansions of the solutions similar to the ones in Kondratiev's theory. The proofs are based on conformal changes of metric, on the differential geometry of manifolds with boundary and bounded geometry, and on our earlier geometric and analytic results on such manifolds.
Nous montrons des résultats de solvabilité et de régularité pour des problèmes de valeurs au bord elliptiques dans certains domaines singuliers, conformément équivalents aux variétés avec bord et géométrie bornée. Nos hypothèses sont satisfaites par les domaines ayant un ensemble lisse de points cuspidaux singuliers, et nos résultats s'appliquent donc à la classe des domaines à singularités coniques oscillantes isolées. En particulier, ils généralisent le résultat classique de Kondratiev de solvabilité pour le laplacien sur les domaines à points coniques. Toutefois, nos domaines et coefficients sont trop généraux pour permettre de développer les solutions en fonctions singulières, comme avec la théorie de Kondratiev. Les démonstrations reposent sur des changements de métriques conformes, sur la géométrie des variétés à bord et géométrie bornée, ainsi que sur nos travaux antérieurs d'analyse et géométrie sur de telles variétés.
Accepted:
Published online:
Bernd Ammann 1; Nadine Große 2; Victor Nistor 3, 4
@article{CRMATH_2019__357_6_487_0, author = {Bernd Ammann and Nadine Gro{\ss}e and Victor Nistor}, title = {Analysis and boundary value problems on singular domains: {An} approach via bounded geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--493}, publisher = {Elsevier}, volume = {357}, number = {6}, year = {2019}, doi = {10.1016/j.crma.2019.04.009}, language = {en}, }
TY - JOUR AU - Bernd Ammann AU - Nadine Große AU - Victor Nistor TI - Analysis and boundary value problems on singular domains: An approach via bounded geometry JO - Comptes Rendus. Mathématique PY - 2019 SP - 487 EP - 493 VL - 357 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2019.04.009 LA - en ID - CRMATH_2019__357_6_487_0 ER -
%0 Journal Article %A Bernd Ammann %A Nadine Große %A Victor Nistor %T Analysis and boundary value problems on singular domains: An approach via bounded geometry %J Comptes Rendus. Mathématique %D 2019 %P 487-493 %V 357 %N 6 %I Elsevier %R 10.1016/j.crma.2019.04.009 %G en %F CRMATH_2019__357_6_487_0
Bernd Ammann; Nadine Große; Victor Nistor. Analysis and boundary value problems on singular domains: An approach via bounded geometry. Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 487-493. doi : 10.1016/j.crma.2019.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.04.009/
[1] Function spaces on singular manifolds, Math. Nachr., Volume 286 (2013) no. 5–6, pp. 436-475
[2] Uniformly regular and singular Riemannian manifolds, Elliptic and Parabolic Equations, Springer Proceedings in Mathematics & Statistics, vol. 119, Springer, Cham, Switzerland, 2015, pp. 1-43
[3] Sobolev embeddings with weights in complete Riemannian manifolds (preprint) | arXiv
[4] Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math., Volume 11 (2006), pp. 161-206 (electronic)
[5] Well-posedness of the Laplacian on manifolds with boundary and bounded geometry, Math. Nachr. (2019) (online first) | DOI
[6] The strong Legendre condition and the well-posedness of mixed Robin problems on manifolds with bounded geometry (Accepted in: Revue Roumaine de Mathématiques Pures et Appliquées, 2018, special issue “Spectral theory and applications to mathematical physics”) | arXiv
[7] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011
[8] Interface and mixed boundary value problems on n-dimensional polyhedral domains, Doc. Math., Volume 15 (2010), pp. 687-745
[9] Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary, Asymptot. Anal., Volume 62 (2009) no. 1–2, pp. 41-88
[10] Analytic regularity for linear elliptic systems in polygons and polyhedra, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 8
[11] Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988
[12] Strongly elliptic problems near cuspidal points and edges, Partial Differential Equations and Functional Analysis, Progr. Nonlinear Differential Equations Appl., vol. 22, Birkhäuser Boston, Boston, MA, USA, 1996, pp. 93-110
[13] Some remarks on uniformly regular Riemannian manifolds, Math. Nachr., Volume 289 (2016) no. 2–3, pp. 232-242
[14] Uniform Shapiro–Lopatinski conditions and boundary value problems on manifolds with bounded geometry, Potential Anal. (2019) (online first) | DOI
[15] Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., Volume 286 (2013) no. 16, pp. 1586-1613
[16] On the third boundary value problem in domains in cusps, J. Math. Sci. (N.Y.), Volume 173 (2011) no. 5, pp. 609-631
[17] Boundary value problems for elliptic equations in domains with conical or angular points, Transl. Moscow Math. Soc., Volume 16 (1967), pp. 227-313
[18] Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, vol. 52, American Mathematical Society, Providence, RI, USA, 1997
[19] On index formulas for manifolds with metric horns, Commun. Partial Differ. Equ., Volume 23 (1998) no. 3–4, pp. 649-684
[20] Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, vol. 181, Springer-Verlag, New York–Heidelberg, 1972 (translated from the French by P. Kenneth)
[21] Asymptotic analysis of a Neumann problem in a domain with cusp. Application to the collision problem of rigid bodies in a perfect fluid, SIAM J. Math. Anal., Volume 47 (2015) no. 6, pp. 4360-4403
[22] Self-adjoint and skew-symmetric extensions of the Laplacian with singular Robin boundary condition, C. R. Acad. Sci. Paris, Ser. I, Volume 356 (2018) no. 9, pp. 927-932
[23] Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994
[24] -algebras of singular integral operators in domains with oscillating conical singularities, Manuscr. Math., Volume 108 (2002) no. 1, pp. 69-90
[25] An operator algebra on manifolds with cusp-type singularities, Ann. Glob. Anal. Geom., Volume 16 (1998) no. 2, pp. 101-140
Cited by Sources:
☆ B.A. and N.G. have been partially supported by SPP 2026 (Geometry at infinity), funded by the DFG. B.A. has also been partially supported by the DFG SFB 1085 (Higher Invariants). V.N. has been partially supported by ANR 14-CE25-0012-01 (SINGSTAR).
Comments - Policy