Comptes Rendus
Number theory
Non-Wieferich primes under the abc conjecture
Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 483-486.

Assuming the abc conjecture, Silverman proved that, for any given positive integer a2, there are logx primes px such that ap11(modp2). In this paper, we show that, for any given integers a2 and k2, there still are logx primes px satisfying ap11(modp2) and p1(modk), under the assumption of the abc conjecture. This improves a recent result of Chen and Ding.

Admettant la conjecture abc, Silverman a montré que, pour tout entier a2, il existe au moins logx nombres premiers px tels que ap11(modp2). Admettant toujours la conjecture abc, nous montrons ici que, pour tous entiers a2 et k2 donnés, il y a encore au moins logx nombres premiers px tels que ap11(modp2) et p1(modk). Ceci améliore un résultat récent de Chen et Ding.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.05.007

Yuchen Ding 1

1 Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China
@article{CRMATH_2019__357_6_483_0,
     author = {Yuchen Ding},
     title = {Non-Wieferich primes under the abc conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {483--486},
     publisher = {Elsevier},
     volume = {357},
     number = {6},
     year = {2019},
     doi = {10.1016/j.crma.2019.05.007},
     language = {en},
}
TY  - JOUR
AU  - Yuchen Ding
TI  - Non-Wieferich primes under the abc conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 483
EP  - 486
VL  - 357
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2019.05.007
LA  - en
ID  - CRMATH_2019__357_6_483_0
ER  - 
%0 Journal Article
%A Yuchen Ding
%T Non-Wieferich primes under the abc conjecture
%J Comptes Rendus. Mathématique
%D 2019
%P 483-486
%V 357
%N 6
%I Elsevier
%R 10.1016/j.crma.2019.05.007
%G en
%F CRMATH_2019__357_6_483_0
Yuchen Ding. Non-Wieferich primes under the abc conjecture. Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 483-486. doi : 10.1016/j.crma.2019.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.05.007/

[1] Y.-G. Chen; Y. Ding Non-Wieferich primes in arithmetic progressions, Proc. Amer. Math. Soc., Volume 145 (2017), pp. 1833-1836

[2] H. Graves; M.R. Murty The abc conjecture and non-Wieferich primes in arithmetic progressions, J. Number Theory, Volume 133 (2013), pp. 1809-1813

[3] J.H. Silverman Wieferich's criterion and the abc-conjecture, J. Number Theory, Volume 30 (1988), pp. 226-237

[4] A. Wieferich Zum letzten Fermatschen Theorem, J. Reine Angew. Math., Volume 136 (1909), pp. 293-302 (in German)

Cited by Sources:

Comments - Policy