Assuming the abc conjecture, Silverman proved that, for any given positive integer , there are primes such that . In this paper, we show that, for any given integers and , there still are primes satisfying and , under the assumption of the abc conjecture. This improves a recent result of Chen and Ding.
Admettant la conjecture abc, Silverman a montré que, pour tout entier , il existe au moins nombres premiers tels que . Admettant toujours la conjecture abc, nous montrons ici que, pour tous entiers et donnés, il y a encore au moins nombres premiers tels que et . Ceci améliore un résultat récent de Chen et Ding.
Accepted:
Published online:
Yuchen Ding 1
@article{CRMATH_2019__357_6_483_0, author = {Yuchen Ding}, title = {Non-Wieferich primes under the abc conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--486}, publisher = {Elsevier}, volume = {357}, number = {6}, year = {2019}, doi = {10.1016/j.crma.2019.05.007}, language = {en}, }
Yuchen Ding. Non-Wieferich primes under the abc conjecture. Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 483-486. doi : 10.1016/j.crma.2019.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.05.007/
[1] Non-Wieferich primes in arithmetic progressions, Proc. Amer. Math. Soc., Volume 145 (2017), pp. 1833-1836
[2] The abc conjecture and non-Wieferich primes in arithmetic progressions, J. Number Theory, Volume 133 (2013), pp. 1809-1813
[3] Wieferich's criterion and the abc-conjecture, J. Number Theory, Volume 30 (1988), pp. 226-237
[4] Zum letzten Fermatschen Theorem, J. Reine Angew. Math., Volume 136 (1909), pp. 293-302 (in German)
Cited by Sources:
Comments - Policy