In this article, we consider a class of functions that are subordinate to certain convex functions in one direction and determine the closed convex hull and its extreme points for functions in this class. Using these results, we solve two extremal problems, namely, coefficient estimates and mean estimates for functions in this class.
Nous considérons dans cette Note une classe de fonctions subordonnées à certaines fonctions convexes dans une direction, dont nous déterminons l'enveloppe convexe fermée et les points extrêmes. À l'aide de ces résultats, nous résolvons deux problèmes extrémaux, à savoir des estimations de coefficients et des estimations de moyenne pour les fonctions de cette classe.
Accepted:
Published online:
Md Firoz Ali 1; Allu Vasudevarao 2
@article{CRMATH_2019__357_5_436_0, author = {Md Firoz Ali and Allu Vasudevarao}, title = {Coefficient estimates and integral mean estimates for certain classes of analytic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {436--442}, publisher = {Elsevier}, volume = {357}, number = {5}, year = {2019}, doi = {10.1016/j.crma.2019.04.013}, language = {en}, }
TY - JOUR AU - Md Firoz Ali AU - Allu Vasudevarao TI - Coefficient estimates and integral mean estimates for certain classes of analytic functions JO - Comptes Rendus. Mathématique PY - 2019 SP - 436 EP - 442 VL - 357 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2019.04.013 LA - en ID - CRMATH_2019__357_5_436_0 ER -
Md Firoz Ali; Allu Vasudevarao. Coefficient estimates and integral mean estimates for certain classes of analytic functions. Comptes Rendus. Mathématique, Volume 357 (2019) no. 5, pp. 436-442. doi : 10.1016/j.crma.2019.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.04.013/
[1] Extremal problems on the class of convex functions of order , Arch. Math. (Basel), Volume 103 (2014) no. 6, pp. 461-471
[2] Harmonic maps and ideal fluid flows, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 479-513
[3] Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc., Volume 156 (1971), pp. 91-107
[4] Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc., Volume 185 (1973), pp. 413-428
[5] Close-to-convexity criteria for planar harmonic mappings, Complex Anal. Oper. Theory, Volume 5 (2011), pp. 767-774
[6] A harmonic maps approach to fluid flows, Math. Ann., Volume 369 (2017), pp. 1-16
[7] Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983
[8] Subordination and extreme-point theory, Pac. J. Math., Volume 50 (1974), pp. 455-468
[9] Linear Problem and Convexity Techniques in Geometric Function Theory, Pitman, 1984
[10] On the limits of the roots of an algebraic equation with positive coefficients, Tohoku Math. J., Volume 2 (1912), pp. 140-142
[11] Majorization by univalent functions, Duke Math. J., Volume 34 (1967), pp. 95-102
[12] Applications of extreme-point theory to univalent functions, Mich. Math. J., Volume 19 (1972), pp. 361-376
[13] Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl., Volume 332 (2007), pp. 1323-1334
[14] The generalized Bieberbach conjecture for subordinate functions, Mich. Math. J., Volume 12 (1965), pp. 421-429
[15] On the coefficients of subordinate functions, Proc. Lond. Math. Soc., Volume 48 (1943), pp. 48-82
[16] Functional Analysis, International Series in Pure and Applied Mathematics, 1991
[17] Analytic functions convex in one direction, J. Math. Soc. Jpn., Volume 4 (1952), pp. 194-202
Cited by Sources:
Comments - Policy