This paper gives a characterization of compactness for maximal commutators with rough kernels in weighted Lebesgue spaces, which is new and interesting even in un-weighted cases. Meanwhile, a new characterization of weighted boundedness for such operators is also established.
Cet article donne une caractérisation de la compacité des commutateurs maximaux avec des noyaux grossiers dans des espaces de Lebesgue pondérés, ce qui est nouveau et intéressant, même dans les cas non pondérés. Entretemps, une nouvelle caractérisation de la limite pondérée pour ces opérateurs est également établie.
Accepted:
Published online:
Yongming Wen 1; Weichao Guo 2; Huoxiong Wu 1; Guoping Zhao 3
@article{CRMATH_2019__357_5_424_0, author = {Yongming Wen and Weichao Guo and Huoxiong Wu and Guoping Zhao}, title = {A note on maximal commutators with rough kernels}, journal = {Comptes Rendus. Math\'ematique}, pages = {424--435}, publisher = {Elsevier}, volume = {357}, number = {5}, year = {2019}, doi = {10.1016/j.crma.2019.04.014}, language = {en}, }
TY - JOUR AU - Yongming Wen AU - Weichao Guo AU - Huoxiong Wu AU - Guoping Zhao TI - A note on maximal commutators with rough kernels JO - Comptes Rendus. Mathématique PY - 2019 SP - 424 EP - 435 VL - 357 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2019.04.014 LA - en ID - CRMATH_2019__357_5_424_0 ER -
Yongming Wen; Weichao Guo; Huoxiong Wu; Guoping Zhao. A note on maximal commutators with rough kernels. Comptes Rendus. Mathématique, Volume 357 (2019) no. 5, pp. 424-435. doi : 10.1016/j.crma.2019.04.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.04.014/
[1] Boundedness results for commutators with BMO functions via weighted estimates: a comprehensive approach | arXiv
[2]
, Academic Press, New York (1962), pp. 64-107[3] Compactness characterization of commutators for Littlewood–Paley operators, Kodai Math. J., Volume 32 (2009) no. 2, pp. 256-323
[4] Compactness of commutators for singular integrals on Morrey spaces, Can. J. Math., Volume 64 (2012) no. 2, pp. 257-281
[5] Compact commutators of rough singular integral operators, Can. Math. Bull., Volume 58 (2015) no. 1, pp. 19-29
[6] Weighted estimates for Beltrami equations, Anal. Acad. Sci. Fenn. Math., Volume 38 (2013) no. 1, pp. 91-113
[7] Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2), Volume 103 (1976) no. 3, pp. 611-635
[8] boundedness of some rough operators with different weights, J. Math. Soc. Jpn., Volume 55 (2003), pp. 209-230
[9] Weighted norm inequalities for fractional integral operator with rough kernel, Can. J. Math., Volume 50 (1998) no. 1, pp. 29-39
[10] Higher order commutators for a class of rough operators, Ark. Mat., Volume 37 (1999) no. 1, pp. 33-44
[11] Compactness of maximal commutators of bilinear, Calderón–Zygmund singular integral operators, Some Topics in Harmonic Analysis and Applications, Adv. Lect. Math., vol. 34, Int. Press, Somerville, MA, USA, 2016, pp. 163-175
[12] Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J., Volume 40 (1991) no. 4, pp. 1397-1420
[13] Fractional maximal function and its commutators on Orlicz spaces, Anal. Math. Phys., Volume 293 (2018), pp. 1-15
[14] Characterizations of the compactness of commutators associated with Lipschitz functions | arXiv
[15] A revisit on the compactness of commutators | arXiv
[16] Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II, J. Math. Anal. Appl., Volume 258 (2001) no. 2, pp. 642-657
[17] Commutators of singular integrals revisited | arXiv
[18] Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc., Volume 15 (1964), pp. 717-721
[19] Higher order commutators for vector-valued Calderón–Zygmund operators, Trans. Amer. Math. Soc., Volume 336 (1993) no. 2, pp. 537-556
[20] On the compactness of operators of Hankel type, Tohoku Math. J. (2), Volume 30 (1978) no. 1, pp. 163-171
[21] Charcterizations of weighted compactness of commutators via , Proc. Amer. Math. Soc., Volume 146 (2018) no. 10, pp. 4239-4254
[22] Characterization of Lipschitz spaces via commutators of the Hardy–Littlewood maximal function, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017) no. 3, pp. 336-344
Cited by Sources:
☆ Supported by the NNSF of China (Nos. 11771358, 11871101, 11701112, 11771388).
Comments - Policy