[Limites de champ moyen pour des noyaux singuliers et applications au modèle de Patlak–Keller–Segel]
Dans cette note, on propose une énergie libre modulée combinant les méthodes développées par P.-E. Jabin et Z. Wang [Inventiones (2018)] et par S. Serfaty [voir l'article de revue Proc. Int. Cong. Math. (2018) et ses références] pour traiter des noyaux plus généraux en théorie de la limite champ moyen. Cette énergie libre modulée consiste en l'introduction d'une famille de poids appropriés dans l'entropie relative développée par P.-E. Jabin et Z. Wang (dans le même esprit que dans le travail récent de D. Bresch et P.-E. Jabin [Ann. of Math. (2) (2018)]) pour compenser les termes les plus singuliers qui font intervenir la divergence du champ de vitesse. Comme exemple, une preuve avec estimation quantitative de la limite champ moyen vers le modèle de Patlak–Keller–Segel en régime sous-critique est obtenue. Notre méthode permet également de couvrir des potentiels singuliers qui peuvent combiner une partie réguliere, une petite partie singulière attractive et une grande partie singulière répulsive.
In this note, we propose a modulated free energy combination of the methods developed by P.-E. Jabin and Z. Wang [Inventiones (2018)] and by S. Serfaty [Proc. Int. Cong. Math. (2018) and references therein] to treat more general kernels in mean-field limit theory. This modulated free energy may be understood as introducing appropriate weights in the relative entropy developed by P.-E. Jabin and Z. Wang (in the spirit of what has been recently developed by D. Bresch and P.-E. Jabin [Ann. of Math. (2) (2018)]) to cancel the most singular terms involving the divergence of the flow. Our modulated free energy allows us to treat singular potentials that combine large smooth part, small attractive singular part, and large repulsive singular part. As an example, a full rigorous derivation (with quantitative estimates) of some chemotaxis models, such as the Patlak–Keller–Segel system in subcritical regimes, is obtained.
Accepté le :
Publié le :
Didier Bresch 1 ; Pierre-Emmanuel Jabin 2 ; Zhenfu Wang 3
@article{CRMATH_2019__357_9_708_0, author = {Didier Bresch and Pierre-Emmanuel Jabin and Zhenfu Wang}, title = {On mean-field limits and quantitative estimates with a large class of singular kernels: {Application} to the {Patlak{\textendash}Keller{\textendash}Segel} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {708--720}, publisher = {Elsevier}, volume = {357}, number = {9}, year = {2019}, doi = {10.1016/j.crma.2019.09.007}, language = {en}, }
TY - JOUR AU - Didier Bresch AU - Pierre-Emmanuel Jabin AU - Zhenfu Wang TI - On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak–Keller–Segel model JO - Comptes Rendus. Mathématique PY - 2019 SP - 708 EP - 720 VL - 357 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2019.09.007 LA - en ID - CRMATH_2019__357_9_708_0 ER -
%0 Journal Article %A Didier Bresch %A Pierre-Emmanuel Jabin %A Zhenfu Wang %T On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak–Keller–Segel model %J Comptes Rendus. Mathématique %D 2019 %P 708-720 %V 357 %N 9 %I Elsevier %R 10.1016/j.crma.2019.09.007 %G en %F CRMATH_2019__357_9_708_0
Didier Bresch; Pierre-Emmanuel Jabin; Zhenfu Wang. On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak–Keller–Segel model. Comptes Rendus. Mathématique, Volume 357 (2019) no. 9, pp. 708-720. doi : 10.1016/j.crma.2019.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.09.007/
[1] From the Vlasov Maxwell Boltzmann System to Incompressible Viscous Electro–Magneto–Hydrodynamics, EMS Monographs in Mathematics, 2019
[2] Méthode de Laplace : étude variationnelle des fluctuations de diffusions de type « champ moyen », Stoch. Stoch. Rep., Volume 31 (1990), pp. 79-144
[3] Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equ., Volume 2006 (2006) no. 44
[4] Global existence of weak solutions for compressible Navier–Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math. (2), Volume 188 (2018), pp. 577-684
[5] D. Bresch, P.-E. Jabin, Z. Wang, Mean field limit and quantitative estimates with a large class of singular kernels, in preparation.
[6] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007) no. 8, pp. 1245-1260
[7] The 2-D stochastic Keller–Segel particle model: existence and uniqueness, ALEA Lat. Am. J. Probab. Math. Stat., Volume 13 (2016) no. 1, pp. 447-463
[8] A functional framework for the Keller–Segel system: logarithmic Hardy–Littlewood–Sobolev and related spectral gap inequalities, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 21–22, pp. 949-954
[9] Optimal critical mass in the two-dimensional Keller–Segel model in , C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 9, pp. 611-616
[10] Mean-field limits for some Riesz interaction gradient flows, SIAM J. Math. Anal., Volume 48 (2016) no. 3, pp. 2269-2300
[11] Propagation of chaos for the 2d viscous vortex model, J. Eur. Math. Soc., Volume 16 (2014), pp. 1425-1466
[12] Stochastic particle approximation of the Keller–Segel equation and two-dimensional generalization of Bessel processes, Ann. Appl. Probab., Volume 5 (2017), pp. 2807-2861
[13] Propagation of chaos for a sub-critical Keller–Segel model, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015), pp. 965-992
[14] Quasineutral limit of the Vlasov–Poisson system with massless electrons, Commun. Partial Differ. Equ., Volume 1385 (2010) no. 1425
[15] Convergence of a stochastic particle approximation for measure solutions of the 2D Keller–Segel system, Commun. Partial Differ. Equ., Volume 36 (2011), pp. 940-960
[16] Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., Volume 19 (2009), pp. 1357-1384
[17] Mean field limit and propagation of chaos for Vlasov systems with bounded forces, J. Funct. Anal., Volume 271 (2016), pp. 3588-3627
[18] Quantitative estimates of propagation of chaos for stochastic systems with kernels, Inventiones, Volume 214 (2018) no. 1, pp. 523-591
[19] Quantitative propagation of chaos in the bimolecular chemical reaction–diffusion model, 2019 | arXiv
[20] A stochastic differential equation arising from the vortex problem, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 61 (1986), pp. 333-336
[21] Propagation of chaos for the two dimensional Navier–Stokes equation, Katata Kyoto, 1985, Academic Press, Boston, MA, USA (1987), pp. 303-334
[22] Quasineutral limit for the relativistic Vlasov–Maxwell system, Asymptot. Anal., Volume 40 (2004) no. 3, 4, pp. 303-352
[23] L. Saint-Raymond, Des points vortex aux équations de Navier–Stokes [d'après P.-E. Jabin et Z. Wang], in: Séminaire Bourbaki, année, 2017–2018 (1143).
[24] Systems of points with Coulomb interactions, Proc. Int. Cong. of Math, Rio de Janeiro, vol. 1, 2018, pp. 935-978
[25] S. Serfaty (Appendix with Mitia Duerinckx), Mean field limit for Coulomb-type flows, submitted for publication.
[26] Large deviations and applications, C.B.M.S., vol. 46, S.I.A.M., Philadelphia, PA, USA, 1984
Cité par Sources :
Commentaires - Politique