Accepted:
Published online:
Guo-Shuai Mao 1; Zhi-Jian Cao 2
@article{CRMATH_2019__357_11-12_815_0, author = {Guo-Shuai Mao and Zhi-Jian Cao}, title = {On two congruence conjectures}, journal = {Comptes Rendus. Math\'ematique}, pages = {815--822}, publisher = {Elsevier}, volume = {357}, number = {11-12}, year = {2019}, doi = {10.1016/j.crma.2019.11.004}, language = {en}, }
Guo-Shuai Mao; Zhi-Jian Cao. On two congruence conjectures. Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 815-822. doi : 10.1016/j.crma.2019.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.11.004/
[1] Tables of Calabi–Yau equations, 2010 (preprint) | arXiv
[2] Generalizations of Clausen's formula and algebraic transformations of Calabi–Yau differential equations, Proc. Edinb. Math. Soc., Volume 54 (2011) no. 2, pp. 273-295
[3] Elementary proof of congruences involving sum of binomial coefficients, Int. J. Number Theory, Volume 14 (2018), pp. 1547-1557
[4] Elliptic integral evaluations of Bessel moments and applications, J. Phys. A, Volume 41 (2008) (46 p)
[5] Some arithmetic properties of short random walk integrals, Ramanujan J., Volume 26 (2011) no. 1, pp. 109-132
[6] Domb's numbers and Ramanujan-Sato type series for , Adv. Math., Volume 186 (2004) no. 2, pp. 396-410
[7] Proof of a supercongruence conjectured by Z.-H. Sun, Integral Transforms Spec. Funct., Volume 25 (2014), pp. 1009-1015
[8] Supercongruences for the Catalan–Larcombe–French numbers, Ramanujan J., Volume 22 (2010), pp. 171-186
[9] Congruences for Catalan–Larcombe–French numbers, Publ. Math. (Debr.), Volume 90 (2017), pp. 387-406
[10] On an identity by Chaundy and Bullard. I, Indag. Math., Volume 19 (2008) no. 2, pp. 239-261
[11] On the ‘other’ Catalan numbers: a historical formulation re-examined, Congr. Numer., Volume 143 (2000), pp. 33-64
[12] On two conjectural supercongruences of Apagodu and Zeilberger, J. Differ. Equ. Appl., Volume 22 (2016), pp. 1791-1799
[13] Proof of two conjectural supercongruences involving Catalan–Larcombe–French numbers, J. Number Theory, Volume 179 (2017), pp. 88-96
[14] Supercongruences on some binomial sums involving Lucas sequences, J. Math. Anal. Appl., Volume 448 (2017), pp. 1061-1078
[15] Two congruences involving harmonic numbers with applications, Int. J. Number Theory, Volume 12 (2016), pp. 527-539
[16] On some congruences involving Domb numbers and harmonic numbers, Int. J. Number Theory, Volume 15 (2019) no. 10, pp. 2179-2200 | DOI
[17] A combinatorial identity with applications to Catalan numbers, Discrete Math., Volume 306 (2006), pp. 1921-1940
[18] Counting Abelian squares, Electron. J. Comb., Volume 16 (2009) no. 1 (9 p)
[19] The on-line encyclopedia of integer sequences http://oeis.org (available at)
[20] Generalized Legendre polynomials and related supercongruences, J. Number Theory, Volume 143 (2014), pp. 293-319
[21] Congruences for Domb and Almkvist–Zudilin numbers, Integral Transforms Spec. Funct., Volume 26 (2015) no. 8, pp. 642-659
[22] Congruences for Apéry-like numbers, 2018 | arXiv
[23] Super congruences and Euler numbers, Sci. China Math., Volume 54 (2011) no. 12, pp. 2509-2535
[24] On sums involving products of three binomial coefficients, Acta Arith., Volume 156 (2012), pp. 123-141
[25] Some new series for and related congruences, J. Nanjing Univ. Math. Biq., Volume 3 (2014), pp. 150-164
[26] New congruences for central binomial coefficients, Adv. Appl. Math., Volume 45 (2010), pp. 125-148
[27] On some new congruences for binomial coefficients, Int. J. Number Theory, Volume 7 (2011), pp. 645-662
[28] Identities involving reciprocals of binomial coefficients, J. Integer Seq., Volume 7 (2004) (Article 04.2.8)
[29] Integral solutions of Apery-like recurrence equations, Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proc. Lecture Notes, vol. 47, Amer. Math. Soc., Providence, RI, USA, 2009, pp. 349-366
Cited by Sources:
Comments - Policy