Comptes Rendus
Number theory
Arithmetic invariants from Sato–Tate moments
Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 823-826.

We give some arithmetic-geometric interpretations of the moments M2[a1], M1[a2], and M1[s2] of the Sato–Tate group of an abelian variety A defined over a number field by relating them to the ranks of the endomorphism ring and Néron–Severi group of A.

Nous donons des interprétations arithmético-géométriques des moments M2[a1], M1[a2], et M1[s2] du groupe de Sato–Tate d'une variété abélienne A definie sur un corps de nombres en les rapportant aux rangs de l'anneau d'endomorphismes et du groupe de Néron–Severi de A.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.11.008
Edgar Costa 1; Francesc Fité 1; Andrew V. Sutherland 1

1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, United States
@article{CRMATH_2019__357_11-12_823_0,
     author = {Edgar Costa and Francesc Fit\'e and Andrew V. Sutherland},
     title = {Arithmetic invariants from {Sato{\textendash}Tate} moments},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {823--826},
     publisher = {Elsevier},
     volume = {357},
     number = {11-12},
     year = {2019},
     doi = {10.1016/j.crma.2019.11.008},
     language = {en},
}
TY  - JOUR
AU  - Edgar Costa
AU  - Francesc Fité
AU  - Andrew V. Sutherland
TI  - Arithmetic invariants from Sato–Tate moments
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 823
EP  - 826
VL  - 357
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2019.11.008
LA  - en
ID  - CRMATH_2019__357_11-12_823_0
ER  - 
%0 Journal Article
%A Edgar Costa
%A Francesc Fité
%A Andrew V. Sutherland
%T Arithmetic invariants from Sato–Tate moments
%J Comptes Rendus. Mathématique
%D 2019
%P 823-826
%V 357
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2019.11.008
%G en
%F CRMATH_2019__357_11-12_823_0
Edgar Costa; Francesc Fité; Andrew V. Sutherland. Arithmetic invariants from Sato–Tate moments. Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 823-826. doi : 10.1016/j.crma.2019.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.11.008/

[1] G. Banaszak; K.S. Kedlaya An algebraic Sato–Tate group and Sato–Tate conjecture, Indiana Univ. Math. J., Volume 64 (2015), pp. 245-274

[2] V. Cantoral Farfán; J. Commelin The Mumford–Tate conjecture implies the algebraic Sato–Tate conjecture of Banaszak and Kedlaya | arXiv

[3] G. Faltings Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366

[4] F. Fité; K.S. Kedlaya; A.V. Sutherland; V. Rotger Sato–Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., Volume 148 (2012), pp. 1390-1442

[5] S. Kim The Sato–Tate conjecture and Nagao's conjecture | arXiv

[6] D. Mumford Abelian Varieties, Tata Institute of Fundamental Research, Bombay, Oxford University Press, 1970

[7] J.-P. Serre Linear Representations of Finite Groups, Springer-Verlag, New York, 1977

[8] J.-P. Serre Lectures on NX(p), CRC Press, Boca Raton, FL, USA, 2012

[9] J. Tate Algebraic cycles and poles of zeta functions, 5–7 December 1963, Harper & Row, New York (1965), pp. 93-110

[10] J. Tate Endomorphisms of abelian varieties over finite fields, Invent. Math., Volume 2 (1966), pp. 134-144

Cited by Sources:

Comments - Policy