[Invariants arithmétiques provenant des moments de Sato–Tate]
Nous donons des interprétations arithmético-géométriques des moments , , et du groupe de Sato–Tate d'une variété abélienne A definie sur un corps de nombres en les rapportant aux rangs de l'anneau d'endomorphismes et du groupe de Néron–Severi de A.
We give some arithmetic-geometric interpretations of the moments , , and of the Sato–Tate group of an abelian variety A defined over a number field by relating them to the ranks of the endomorphism ring and Néron–Severi group of A.
Accepté le :
Publié le :
Edgar Costa 1 ; Francesc Fité 1 ; Andrew V. Sutherland 1
@article{CRMATH_2019__357_11-12_823_0, author = {Edgar Costa and Francesc Fit\'e and Andrew V. Sutherland}, title = {Arithmetic invariants from {Sato{\textendash}Tate} moments}, journal = {Comptes Rendus. Math\'ematique}, pages = {823--826}, publisher = {Elsevier}, volume = {357}, number = {11-12}, year = {2019}, doi = {10.1016/j.crma.2019.11.008}, language = {en}, }
Edgar Costa; Francesc Fité; Andrew V. Sutherland. Arithmetic invariants from Sato–Tate moments. Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 823-826. doi : 10.1016/j.crma.2019.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.11.008/
[1] An algebraic Sato–Tate group and Sato–Tate conjecture, Indiana Univ. Math. J., Volume 64 (2015), pp. 245-274
[2] The Mumford–Tate conjecture implies the algebraic Sato–Tate conjecture of Banaszak and Kedlaya | arXiv
[3] Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366
[4] Sato–Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., Volume 148 (2012), pp. 1390-1442
[5] The Sato–Tate conjecture and Nagao's conjecture | arXiv
[6] Abelian Varieties, Tata Institute of Fundamental Research, Bombay, Oxford University Press, 1970
[7] Linear Representations of Finite Groups, Springer-Verlag, New York, 1977
[8] Lectures on , CRC Press, Boca Raton, FL, USA, 2012
[9] Algebraic cycles and poles of zeta functions, 5–7 December 1963, Harper & Row, New York (1965), pp. 93-110
[10] Endomorphisms of abelian varieties over finite fields, Invent. Math., Volume 2 (1966), pp. 134-144
Cité par Sources :
Commentaires - Politique